Skip to main content
Log in

Influences of sintering temperature on the electrical conductivity of GDC-50vol%MgO composite ceramics: the role of the GDC/MgO heterogeneous interface

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Magnesium oxide can be added into Gd-doped CeO2 (GDC) as a suitable sintering additive, and the continuous GDC/MgO heterogeneous interface will contribute to the promotion of the oxygen ion transmission. GDC-50vol%MgO composite ceramics were sintered at different temperatures (1350~1500 °C). The phase composition, micromorphology, and electrical conductivity of GDC-50vol%MgO were analyzed by XRD, SEM, TEM, and electrochemical impedance, respectively. There are only GDC and MgO phases in the ceramics sintered at 1350 °C, 1400 °C, 1450 °C, and 1500 °C. As the sintering temperature rises from 1350 to 1500 °C, the average grain size of GDC and MgO increases from 239/274 to 680/651 nm, respectively. The GDC/MgO heterogeneous interface is clear, and many edge dislocations form there. The grain boundary and total conductivities decrease significantly with the rising sintering temperature, and the GDC/MgO heterogeneous interface possesses a higher electrical conductivity than the GDC/GDC homogeneous interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ning Z, Milin Z, Fucheng X, Cheng W, Zhixiang L, Zongqian M (2012) Fabrication and characterization of anode support low-temperature solid oxide fuel cell based on the Samaria-doped ceria electrolyte. Int J Hydrog Energy 37:797–801. https://doi.org/10.1016/j.ijhydene.2011.04.059

    Article  CAS  Google Scholar 

  2. Zhang T (2004) Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0.8Gd0.2O2-δ ceramics. Solid State Ionics 168:187–195. https://doi.org/10.1016/j.ssi.2004.02.015

    Article  CAS  Google Scholar 

  3. Ahmed A, Raza R, Khalid MS, Saleem M, Alvi F (2016) Highly efficient composite electrolyte for natural gas fed fuel cell. Int J Hydrog Energy 41:6972–6979. https://doi.org/10.1016/j.ijhydene.2016.02.095

    Article  CAS  Google Scholar 

  4. Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210. https://doi.org/10.1016/j.pmatsci.2005.07.001

    Article  CAS  Google Scholar 

  5. Ahmad SI, Mohammed T, Bahafi A, Suresh MB (2017) Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte. Appl Nanosci 7:243–252. https://doi.org/10.1007/s13204-017-0567-x

    Article  CAS  Google Scholar 

  6. Venkataramana K, Ravindranath K, Madhuri C, Madhusudan C, Pavan Kumar N, Vishnuvardhan Reddy C (2018) Low temperature microwave sintering of yttrium and samarium co-doped ceria solid electrolytes for IT-SOFCs. Ionics 24:1429–1438. https://doi.org/10.1007/s11581-017-2293-5

    Article  CAS  Google Scholar 

  7. Badwal SPS, Ciacchi FT (2000) Oxygen-ion conducting electrolyte materials for solid oxide fuel cells. Ionics 6:1–21. https://doi.org/10.1007/BF02375543

    Article  CAS  Google Scholar 

  8. Sandhya K, Chitra Priya NS, Rajendran DN, Thappily P (2020) Structural and electrical properties of cerium oxides doped by Sb3+ and Bi3+ cations. J Electron Mater 49:4936–4944. https://doi.org/10.1007/s11664-020-08220-9

    Article  CAS  Google Scholar 

  9. Kim D-J (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions. J Am Ceram Soc 72:1415–1421. https://doi.org/10.1111/j.1151-2916.1989.tb07663.x

    Article  CAS  Google Scholar 

  10. Mogensen M (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94. https://doi.org/10.1016/S0167-2738(99)00318-5

    Article  CAS  Google Scholar 

  11. Guo X, Sigle W, Maier J (2003) Blocking grain boundaries in yttria-doped and undoped ceria ceramics of high purity. J Am Ceram Soc 86:77–87. https://doi.org/10.1111/j.1151-2916.2003.tb03281.x

    Article  CAS  Google Scholar 

  12. Ge L, Li R, He S, Chen H, Guo L (2012) Effect of titania concentration on the grain boundary conductivity of Ce0.8Gd0.2O1.9 electrolyte. Int J Hydrog Energy 37:16123–16129. https://doi.org/10.1016/j.ijhydene.2012.08.031

    Article  CAS  Google Scholar 

  13. Ge L, Li S, Zheng Y, Zhou M, Chen H, Guo L (2011) Effect of zinc oxide doping on the grain boundary conductivity of Ce0.8Ln0.2O1.9 ceramics (Ln=Y, Sm, Gd). J Power Sources 196:6131–6137. https://doi.org/10.1016/j.jpowsour.2011.03.032

    Article  CAS  Google Scholar 

  14. Cho YH, Cho P-S, Auchterlonie G, Kim DK, Lee J-H, Kim D-Y, Park H-M, Drennan J (2007) Enhancement of grain-boundary conduction in gadolinia-doped ceria by the scavenging of highly resistive siliceous phase. Acta Mater 55:4807–4815. https://doi.org/10.1016/j.actamat.2007.05.001

    Article  CAS  Google Scholar 

  15. Cho P-S, Lee SB, Cho YH, Kim D-Y, Park H-M, Lee J-H (2008) Effect of CaO concentration on enhancement of grain-boundary conduction in gadolinia-doped ceria. J Power Sources 183:518–523. https://doi.org/10.1016/j.jpowsour.2008.05.041

    Article  CAS  Google Scholar 

  16. Cho P-S, Cho YH, Park S-Y, Lee SB, Kim D-Y, Park H-M, Auchterlonie J, Drennan J, Lee J-H (2009) Grain-boundary conduction in gadolinia-doped ceria: the effect of SrO addition. J Electrochem Soc 156:B339. https://doi.org/10.1149/1.3046153

    Article  CAS  Google Scholar 

  17. Zhou R, Bu Y, Xu D, Zhong Q (2014) Synthesis and characterization of Ca and Sr co-doped ceria electrolytes. Ionics 20:721–727. https://doi.org/10.1007/s11581-013-0999-6

    Article  CAS  Google Scholar 

  18. Kim HN, Park HJ, Choi GM (2006) The effect of alumina addition on the electrical conductivity of Gd-doped ceria. J Electroceram 17:793–798. https://doi.org/10.1007/s10832-006-7000-2

    Article  CAS  Google Scholar 

  19. Zhang T, Zeng Z, Huang H, Hing P, Kilner J (2002) Effect of alumina addition on the electrical and mechanical properties of Ce0.8Gd0.2O2-δ ceramics. Mater Lett 57:124–129. https://doi.org/10.1016/S0167-577X(02)00717-6

    Article  CAS  Google Scholar 

  20. Li B, Wei X, Pan W (2008) Electrical properties of mg-doped Gd0.1Ce0.9O1.95 under different sintering conditions. J Power Sources 183:498–505. https://doi.org/10.1016/j.jpowsour.2008.05.050

    Article  CAS  Google Scholar 

  21. Bi H, Liu X, Zhu L, Sun J, Yu S, Yu H, Pei L (2017) Effect of MgO addition and grain size on the electrical properties of Ce0.9Gd0.1O1.95 electrolyte for IT-SOFCs. Int J Hydrog Energy 42:11735–11744. https://doi.org/10.1016/j.ijhydene.2017.02.110

    Article  CAS  Google Scholar 

  22. Vashook V, Zosel J, Sperling E, Ahlborn K, Gerlach F, Fichtner W, Schelter M, Guth U, Mertig M (2016) Nanocomposite ceramics based on Ce0.9Gd0.1O1.95 and MgO. Solid State Ionics 288:98–102. https://doi.org/10.1016/j.ssi.2016.01.033

    Article  CAS  Google Scholar 

  23. Vashook VV, Zosel J, Schelter M, Ahlborn K, Gerlach F, Fichtner W, Schelter M, Guth U, Mertig M (2018) Nanocomposite ceramics on the basis of magnesium, cerium, and samarium oxides. Russ J Electrochem 54:1176–1185. https://doi.org/10.1134/S1023193518140100

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Yunnan Ten Thousand Talents Plan Young & Elite Talents Project and the National Natural Science Foundation of China (Grant No. 51462018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Meng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zhang, H., Meng, B. et al. Influences of sintering temperature on the electrical conductivity of GDC-50vol%MgO composite ceramics: the role of the GDC/MgO heterogeneous interface. Ionics 27, 269–277 (2021). https://doi.org/10.1007/s11581-020-03811-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03811-2

Keywords

Navigation