Skip to main content
Log in

Blocking analysis of thermal runaway of a lithium-ion battery under local high temperature based on the material stability and heat dissipation coefficient

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to achieve a safer battery and battery design, it is necessary to fully understand thermal runaway. In this paper, the thermal abuse model of the NCM lithium-ion battery is established. Through simulation analysis, the thermal runaway characteristics of lithium-ion batteries under different heat dissipation conditions and different thermal stability materials were obtained, including the values of initial temperature and maximum temperature and time. The results show that improving the heat dissipation condition outside the battery can improve the heat transfer coefficient of the battery surface, reduce the rising speed of the battery temperature, and delay the time and heat of the heat generation side reaction. When the local temperature is 200 °C, the coefficient of heat transfer is greater than 1 W/(m2 K), and in the positive reaction with electrolyte initial temperature of 210 °C, the battery will not undergo the heat out of control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262(20)

    Article  CAS  Google Scholar 

  2. Barai A, Uddin K, Widanalage WD, McGordon A, Jennings P (2016) The effect of average cycling current on total energy of lithium-ion batteries for electric vehicles. J Power Sources 303:81–85

    Article  CAS  Google Scholar 

  3. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  4. Ling Z, Wang F, Fang X et al (2015) A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl Energy 148(jun.15):403–409

    Article  CAS  Google Scholar 

  5. Ritchie A, Howard W (2006) Recent developments and likely advances in lithium-ion batteries. J Power Sources 162(2):809–812

    Article  CAS  Google Scholar 

  6. Ye YH, Saw LH, Shi YX et al (2015) Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl Therm Eng 86:281–291

    Article  CAS  Google Scholar 

  7. Ge H, Huang J, Zhang J, Li Z (2016) Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention. J Electrochem Soc 163(2):A290–A299

    Article  CAS  Google Scholar 

  8. Malik M, Dincer I, Rosen MA (2016) Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. Int J Energy Res 40(8):1011–1031

    Article  CAS  Google Scholar 

  9. Wang QS, Ping P, Zhao XJ et al (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  10. Wood E, Alexander M, Bradley TH (2011) Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles. J Power Sources 196(11):5147–5154

    Article  CAS  Google Scholar 

  11. Pecht M, Hendricks C, He W et al (2013) Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability. Energies 6(9):4682–4695

    Article  Google Scholar 

  12. Smith BL (2013) Chevrolet volt battery incident-NHTSA summary report. Accid Reconstr J 23

  13. Larsson F, Anderson J, Andersson P, Mellander BE (2016) Thermal modelling of cell-to-cell fire propagation and cascading thermal runaway failure effects for lithium-ion battery cells and modules using fire walls. J Electrochem Soc 163(14):A2854–A2865

    Article  CAS  Google Scholar 

  14. Chen Z, Belharouak M, Sun YK et al (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23(8):959–969

    Article  CAS  Google Scholar 

  15. Xu XM, Fu JQ, Jiang HB et al (2017) Research on the heat dissipation performance of lithium-ion cell with different operating conditions. Int J Energy Res 41(11):1642–1654

    Article  CAS  Google Scholar 

  16. Zhao R, Liu J, Gu J (2016) Simulation and experimental study on lithium ion battery short circuit. Appl Energy 173(JUL.1):29–39

    Article  CAS  Google Scholar 

  17. Finegan DP, Scheel M, Robinson JB, Tjaden B, di Michiel M, Hinds G, Brett DJL, Shearing PR (2016) Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study. Phys Chem Chem Phys 18(45):30912–30919

    Article  CAS  PubMed  Google Scholar 

  18. Ye J, Chen H, Wang Q et al (2016) Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Appl Energy 182(nov.15):464–474

    Article  CAS  Google Scholar 

  19. Hatchard TD, Trussler S, Dahn JR (2014) Building a “smart nail” for penetration tests on Li-ion cells. J Power Sources 247:821–823

    Article  CAS  Google Scholar 

  20. Xu XM, Sun XD, Hu DH, Li RZ, Tang W (2018) Research on heat dissipation performance and flow characteristics of air-cooled battery pack. Int J Energy Res 42(11):3658–3671

    Article  Google Scholar 

  21. Wang H, Kumar A, Simunovic S, Allu S, Kalnaus S, Turner JA, Helmers JC, Rules ET, Winchester CS, Gorney P (2017) Progressive mechanical indentation of large-format Li-ion cells. J Power Sources 341:156–164

    Article  CAS  Google Scholar 

  22. Xu XM, Tang W, Fu JQ et al (2018) The forced air cooling heat dissipation performance of different battery pack bottom duct. Int J Energy Res 42(12):3823–3836

    Article  Google Scholar 

  23. Finegan DP, Tjaden B, Thomas MMH et al (2017) Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells. J Electrochem Soc 164(13):A3285–A3291

    Article  CAS  Google Scholar 

  24. Lisbona D, Snee T (2011) A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf Environ Prot 89(6):434–442

    Article  CAS  Google Scholar 

  25. Kitoh K, Nemoto H (1999) 100 Wh large size Li-ion batteries and safety tests. J Power Sources 81-82:887–890

    Article  CAS  Google Scholar 

  26. Tobishima SI, Yamaki JI (1999) A consideration of lithium cell safety. J Power Sources s 81–82:882–886

    Article  Google Scholar 

  27. Ping P, Wang QS, Huang PF et al (2014) Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl Energy 129:261–273

    Article  CAS  Google Scholar 

  28. Finegan DP, Darcy E, Keyser M, Tjaden B, Heenan TMM, Jervis R, Bailey JJ, Malik R, Vo NT, Magdysyuk OV, Atwood R, Drakopoulos M, DiMichiel M, Rack A, Hinds G, Brett DJL, Shearing PR (2017) Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. Energy Environ Sci 10(6):1377–1388

    Article  CAS  Google Scholar 

  29. Xu J, Lan C, Qiao Y, Ma Y (2017) Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl Therm Eng 110:883–890

    Article  CAS  Google Scholar 

  30. Hatchard TD, Macneil DD, Basu A et al (2001) Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc 148(7):A755–A761

    Article  CAS  Google Scholar 

  31. Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113(1):81–100

    Article  CAS  Google Scholar 

  32. Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158(3):R1

    Article  CAS  Google Scholar 

  33. Biensan P, Simon B, Peres JP et al (1999) On safety of lithium-ion cells. J Power Sources s 81–82:906–912

    Article  Google Scholar 

  34. Kim GH, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170(2):476–489

    Article  CAS  Google Scholar 

  35. Wang HY, Tang AD, Huang KL (2011) Oxygen evolution in overcharged LixNil/3Col/3Mn1/302 electrode and its thermal analysis kinetics. Chin J Chem 29:1583–1588

    Article  CAS  Google Scholar 

  36. Kim HS, Kong M, Kim K, Kim IJ, Gu HB (2007) Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources 171(2):917–921

    Article  CAS  Google Scholar 

  37. Kim HS, Kim K, Moon SI, Kim IJ, Gu HB (2008) A study on carbon-coated LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Solid State Electrochem 12(7–8):867–872

    Article  CAS  Google Scholar 

  38. Zhang MX, Feng XN, Ouyang MG et al (2015) Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery. Automot Eng 37(7):743–750 and 756

    Google Scholar 

  39. Xu XM, Li RZ, Zhao L et al (2018) Probing the thermal runaway triggering process within a lithium-ion battery cell with local heating. AIP Adv 8(10):105323

    Article  Google Scholar 

  40. Zhao L, Zhu MT, Xu XM et al (2019) Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions. Appl Therm Eng 159:113847

    Article  Google Scholar 

Download references

Funding

This work was supported by the Foundation of State Key Laboratory of Automotive Simulation and Control (20180103), the National Natural Science Foundation of China (51875259), the National Key Research and Development Program (2018YFC0810504), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19_1169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Xu, X., Zhao, L. et al. Blocking analysis of thermal runaway of a lithium-ion battery under local high temperature based on the material stability and heat dissipation coefficient. Ionics 27, 107–122 (2021). https://doi.org/10.1007/s11581-020-03800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03800-5

Keywords

Navigation