Skip to main content

Advertisement

Log in

A review of cathode materials in lithium-sulfur batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-sulfur battery, one of the most prominent and widely studied batteries, takes sulfur as the cathode which has rich reserves in the earth. It has the characteristics of high energy density, high theoretical specific capacity, affordable cost, and environment-friendly. Although this system has many advantages, it has many essential shortcomings, such as the non-conductivity of active materials and discharge intermediates, shuttle effect, the volume effect of the sulfur cathode, and the dendritic growth of lithium. In this paper, we summarize the solutions and related research of cathode materials in the lithium-sulfur battery from three aspects: the improvement of conductivity, the alleviation of the shuttle effect, and the use of Li2S cathode. And put forward the suggestions and prospects for future improvement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

LiPs:

lithium polysulfides

Li-S battery/Li-S batteries:

lithium-sulfur battery/lithium-sulfur batteries

TDPAT (H6TDPAT):

2,4,6-tris(dicarboxyphenylamino)-1,3,5-triazine

BTB:

benzene-1,3,5-triphenate

BP:

4,4′-bipyridine

MOF:

metal-organic framework

COHP:

crystal orbital Hamilton population

References

  1. Liang J, Zhao H, Yue L, Fan G, Li T, Lu S, Chen G, Gao S, Asiri AM, Sun X (2020) Recent advances in electrospun nanofibers for supercapacitors. J Mater Chem A. https://doi.org/10.1039/D0TA05100D

  2. Yue LC, Zhao HT, Wu ZG, Liang J, Lu SY, Chen G, Gao SY, Zhong BH, Guo XD, Sun XP (2020) Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J Mater Chem A 8:11493–11510

    CAS  Google Scholar 

  3. Feng G, Liu X, Wu Z, Chen Y, Yang Z, Wu C, Guo X, Zhong B, Xiang W, Li J (2020) Enhancing performance of Li–S batteries by coating separator with MnO @ yeast-derived carbon spheres. J Alloys Compd 817:152723

    CAS  Google Scholar 

  4. Feng GL, Liu XH, Liu YN, Wu ZG, Chen YX, Guo XD, Zhong BH, Xiang W, Li JS (2018) Trapping polysulfides by chemical adsorption barrier of LixLayTiO3 for enhanced performance in lithium-sulfur batteries. Electrochim Acta 283:894–903

    CAS  Google Scholar 

  5. Yin WZ, Wu ZG, Tian W, Chen YX, Xiang W, Feng GL, Li YC, Wu CJ, Xu CL, Bai CJ, Zhong BH, Wang XL, Zhang J, He FR, Alshehri AA, Guo XD (2019) Enhanced constraint and catalysed conversion of lithium polysulfides via composite oxides from spent layered cathodes. J Mater Chem A 7:17867–17875

    CAS  Google Scholar 

  6. Wang Y, Guo X, Chen C, Wang Y, Li Q, Wu Z, Zhong B, Chen Y (2020) Alleviating the shuttle effect via bifunctional MnFe2O4/AB modified separator for high performance lithium sulfur battery. Electrochim Acta:354

  7. Chung SH, Chang CH, Manthiram A (2018) Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv Funct Mater 28:1801188

    Google Scholar 

  8. Liu X, Huang JQ, Zhang Q, Mai LQ (2017) Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater 29:1601759

    Google Scholar 

  9. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1:16132

    CAS  Google Scholar 

  10. Ji X, Nazar LF (2010) Advances in Li-S batteries. J Mater Chem 20:9821–9826

    CAS  Google Scholar 

  11. Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506

    CAS  Google Scholar 

  12. Manthiram A, Fu YZ, Su YS (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134

    CAS  PubMed  Google Scholar 

  13. Song MK, Cairns EJ, Zhang YG (2013) Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5:2186–2204

    CAS  PubMed  Google Scholar 

  14. Lim WG, Kim S, Jo C, Lee J (2019) A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew Chem Int Ed 58:18746–18757

    CAS  Google Scholar 

  15. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751–11787

    CAS  Google Scholar 

  16. Yang Y, Zheng GY, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    CAS  PubMed  Google Scholar 

  17. Zhang J, Huang H, Bae J, Chung SH, Zhang WK, Manthiram A, Yu GH (2018) Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: structure design and interfacial chemistry. Small Methods:2, Unsp 1700279

  18. Peng HJ, Huang JQ, Cheng XB, Zhang Q (2017) Review on High-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7:1700260

    Google Scholar 

  19. Yuan H, Peng H-J, Huang J-Q, Zhang Q (2019) Sulfur Redox reactions at working interfaces in lithium-sulfur batteries: a perspective. Adv Mater Interf:6

  20. Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467

    CAS  PubMed  Google Scholar 

  21. Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46:1135–1143

    CAS  PubMed  Google Scholar 

  22. Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, Cheng XB, Wei F, Zhang Q (2016) Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16:519–527

    CAS  PubMed  Google Scholar 

  23. Song JX, Yu ZX, Gordin ML, Wang DH (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett 16:864–870

    CAS  PubMed  Google Scholar 

  24. Zhou GM, Li L, Ma CQ, Wang SG, Shi Y, Koratkar N, Ren WC, Li F, Cheng HM (2015) A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 11:356–365

    CAS  Google Scholar 

  25. Li F, Kaiser MR, Ma JM, Guo ZP, Liu HK, Wang JZ (2018) Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Mater 13:312–322

    Google Scholar 

  26. Chen K, Cao J, Lu QQ, Wang QR, Yao MJ, Han MM, Niu ZQ, Chen J (2018) Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res 11:1345–1357

    CAS  Google Scholar 

  27. Wu H, Zhuo D, Kong DS, Cui Y (2014) Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun 5

  28. Cheng XB, Peng HJ, Huang JQ, Zhang R, Zhao CZ, Zhang Q (2015) Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano 9:6373–6382

    CAS  PubMed  Google Scholar 

  29. Xu ZL, Fan ML, Wang JJ, Zhang FF, Lin WR, Zhang HN (2020) Trace iron-decorated nitrogen/sulfur co-doped hierarchically porous carbon for oxygen reduction and lithium-sulfur batteries. ACS Appl Energy Mater 3:2719–2726

    CAS  Google Scholar 

  30. Yu ZS, Liu ML, Guo DY, Wang JH, Chen X, Li J, Jin HL, Yang Z, Chen X, Wang S (2020) Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries. Angew Chem Int Ed 59:6406–6411

    CAS  Google Scholar 

  31. Ren M, Lu X, Chai Y, Zhou X, Ren J, Zheng Q, Lin D (2019) A three-dimensional conductive cross-linked all-carbon network hybrid as a sulfur host for high performance lithium-sulfur batteries. J Colloid Interf Sci 552:91–100

    CAS  Google Scholar 

  32. Cao J, Chen C, Zhao Q, Zhang N, Lu QQ, Wang XY, Niu ZQ, Chen J (2016) A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional con. Adv Mater 28:9629-+

    CAS  PubMed  Google Scholar 

  33. Wang R, Yang J, Chen X, Zhao Y, Zhao W, Qian G, Li S, Xiao Y, Chen H, Ye Y, Zhou G, Pan F (2020) Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv Energy Mater 10:1903550

    CAS  Google Scholar 

  34. Jin J, Cai W, Cai J, Shao Y, Song Y, Xia Z, Zhang Q, Sun J (2020) MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium–sulfur batteries. J Mater Chem A 8:3027–3034

    CAS  Google Scholar 

  35. Mei C, Jianhui Z, Ouwei S, Chengbin J, Huadong Y, Tiefeng L, Yujing L, Yao W, Jianwei N, Xinyong T (2019) Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode†. J Mater Chem A 7:18267–18274

    Google Scholar 

  36. Mengdi Z, Chang YU, Juan Y, Changtai Z, Zheng L, Jieshan Q (2017) Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. J Mater Chem A 5:10380–10386

    Google Scholar 

  37. Wei A, Weiwei Z, Zhuzhu D, Yu C, Zhipeng S, Chao W, Chenji Z, Changming L, Wei H, Ting Y (2016) Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Mater 6:112–118

    Google Scholar 

  38. Yazhou W, Meng L, Lichun X, Tianyu T, Zeeshan A, Xiaoxiao H, Yanglong H, Shanqing Z (2018) Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries. Chem Eng J 358:962–968

    Google Scholar 

  39. Wei D, Xufeng Z, Qile F, Zhaoping L (2017) Bifunctional hierarchical porous carbon network integrated with in-situ formed ultrathin graphene shell for stable lithium-sulfur battery. J Mater Chem A 5:13674–13682

    Google Scholar 

  40. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    CAS  PubMed  Google Scholar 

  41. Li-Chang Y, Ji L, Guang-Min Z, Feng L, Riichiro S, Hui-Ming C (2016) Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25:203–210

    Google Scholar 

  42. Linlin Z, Daobin L, Zahir M, Fang W, Wei X, Yijing W, Li S, Zhiqiang N, Jun C (2019) Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater 31:1903955

    Google Scholar 

  43. Weiwei S, Yanjun X, Xiudong C, Yi X, Fan W, Yong W (2019) Reduced graphene oxide modified with naphthoquinone for effective immobilization of polysulfides in high-performance Li-S batteries. Chem Eng J 383:123111

    Google Scholar 

  44. Yongzheng Z, Xia G, Qi K, Zhenkai K, Yanli W, Liang Z (2020) Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries. Chem Eng J 393:124570

    Google Scholar 

  45. Zhao Y, Wu WL, Li JX, Xu ZC, Guan LH (2014) Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv Mater 26:5113–5118

    CAS  PubMed  Google Scholar 

  46. Raghunandan U, Martin F, Tony J, Juan B, Steffen O, Rafał N, Natalia S, Ivan K, Mark HR, Lars G (2017) Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes. Energy Storage Mater 10:206–215

    Google Scholar 

  47. Ruopian F, Guoxian L, Shiyong Z, Lichang Y, Kui D, Pengxiang H, Shaogang W, Hui-Ming C, Chang L, Feng L (2017) Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy 42:205–214

    Google Scholar 

  48. Guangmin Z, Da-Wei W, Feng L, Peng-Xiang H, Lichang Y, Chang L, Gao Qing L, Ian RG, Hui-Ming C (2012) A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries†. Energy Environ Sci 5:8901–8906

    Google Scholar 

  49. Zhang CF, Wu HB, Yuan CZ, Guo ZP, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew Chem Int Ed 51:9592–9595

    CAS  Google Scholar 

  50. Zhu L, Peng HJ, Liang JY, Huang JQ, Chen CM, Guo XF, Zhu WC, Li P, Zhang Q (2015) Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries. Nano Energy 11:746–755

    CAS  Google Scholar 

  51. Wang T, Zhu J, Wei Z, Yang H, Ma Z, Ma R, Zhou J, Yang Y, Peng L, Fei H, Lu B, Duan X (2019) Bacteria-derived biological carbon building robust Li-S batteries. Nano Lett 19:4384–4390

    CAS  PubMed  Google Scholar 

  52. Yu M, Li R, Tong Y, Li Y, Li C, Hong J-D, Shi G (2015) A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries. J Mater Chem A 3:9609–9615

    CAS  Google Scholar 

  53. Wu W, Pu J, Wang J, Shen Z, Tang H, Deng Z, Tao X, Pan F, Zhang H (2018) Biomimetic bipolar microcapsules derived from Staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv Energy Mater:8

  54. Luo C, Zhu HL, Luo W, Shen F, Fan XL, Dai JQ, Liang YJ, Wang CS, Hu LB (2017) Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries. ACS Appl Mater Interfaces 9:14801–14807

    CAS  PubMed  Google Scholar 

  55. Li Q, Liu Y, Wang Y, Chen Y, Guo X, Wu Z, Zhong B (2020) Review of the application of biomass-derived porous carbon in lithium-sulfur batteries. Ionics

  56. Bhargav A, He J, Gupta A, Manthiram A (2020) Lithium-sulfur batteries: attaining the critical metrics. Joule 4:285–291

    Google Scholar 

  57. Cai D, Lu M, Li, Cao J, Chen D, Tu H, Li J, Han W (2019) A highly conductive MOF of graphene analogue Ni3 (HITP)2 as a sulfur host for high-performance lithium-sulfur batteries. Small 15:e1902605

    PubMed  Google Scholar 

  58. Park J, Lee M, Feng DW, Huang ZH, Hinckley AC, Yakoyenko A, Zou XD, Cui Y, Bao ZA (2018) Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J Am Chem Soc 140:10315–10323

    CAS  PubMed  Google Scholar 

  59. Aubrey ML, Wiers BM, Andrews SC, Sakurai T, Reyes-Lillo SE, Hamed SM, Yu CJ, Darago LE, Mason JA, Baeg JO, Grandjean F, Long GJ, Seki S, Neaton JB, Yang PD, Long JR (2018) Electron delocalization and charge mobility as a function of reduction in a metal-organic framework. Nat Mater 17:625-+

    CAS  PubMed  Google Scholar 

  60. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134:18510–18513

    CAS  PubMed  Google Scholar 

  61. Zhou J, Yu X, Fan X, Wang X, Li H, Zhang Y, Li W, Zheng J, Wang B, Li X (2015) The impact of the particle size of a metal-organic framework for sulfur storage in Li-S batteries. J Mater Chem A 3:8272–8275

    CAS  Google Scholar 

  62. Jiang H, Liu X-C, Wu Y, Shu Y, Gong X, Ke F-S, Deng H (2018) Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew Chem 130:3980–3985

    Google Scholar 

  63. Li ML, Wan Y, Huang JK, Assen AH, Hsiung CE, Jiang H, Han Y, Eddaoudi M, Lai ZP, Ming J, Li LJ (2017) Metal-organic framework-based separators for enhancing Li-S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Lett 2:2362–2367

    CAS  Google Scholar 

  64. Demir-Cakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Ferey G, Tarascon J-M (2011) Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133:16154–16160

    CAS  PubMed  Google Scholar 

  65. Zhou J, Li R, Fan X, Chen Y, Han R, Li W, Zheng J, Wang B, Li X (2014) Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ Sci 7:2715–2724

    CAS  Google Scholar 

  66. Wang Z, Dou Z, Cui Y, Yang Y, Wang Z, Qian G (2014) Sulfur encapsulated ZIF-8 as cathode material for lithium-sulfur battery with improved cyclability. Microporous Mesoporous Mater 185:92–96

    CAS  Google Scholar 

  67. Baumann AE, Aversa GE, Roy A, Falk ML, Bedford NM, Thoi VS (2018) Promoting sulfur adsorption using surface Cu sites in metal-organic frameworks for lithium sulfur batteries. J Mater Chem A 6:4811–4821

    CAS  Google Scholar 

  68. Kaiser MR, Ma ZH, Wang XW, Han FD, Gao T, Fan XL, Wang JZ, Liu HK, Dou SX, Wang CS (2017) Reverse microemulsion synthesis of sulfur/graphene composite for lithium/sulfur batteries. ACS Nano 11:9048–9056

    CAS  PubMed  Google Scholar 

  69. Qiu YC, Li WF, Zhao W, Li GZ, Hou Y, Liu MN, Zhou LS, Ye FM, Li HF, Wei ZH, Yang SH, Duan WH, Ye YF, Guo JH, Zhang YG (2014) High-rate, ultra long cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827

    CAS  PubMed  Google Scholar 

  70. Luo C, Zhu YJ, Borodin O, Gao T, Fan XL, Xu YH, Xu K, Wang CS (2016) Activation of Oxygen-Stabilized Sulfur for Li and Na Batteries. Adv Funct Mater 26:745–752

    Google Scholar 

  71. Zhou WD, Yu YC, Chen H, DiSalvo FJ, Abruna HD (2013) Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc 135:16736–16743

    CAS  PubMed  Google Scholar 

  72. Wang JK, Yue KQ, Zhu XD, Wang KL, Duan LF (2016) C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries. Phys Chem Chem Phys 18:261–266

    CAS  PubMed  Google Scholar 

  73. Xiao LF, Cao YL, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie ZM, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    CAS  PubMed  Google Scholar 

  74. Yin LC, Wang JL, Yang J, Nuli YN (2011) A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J Mater Chem 21:6807–6810

    CAS  Google Scholar 

  75. Yin LC, Wang JL, Lin FJ, Yang J, Nuli Y (2012) Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ Sci 5:6966–6972

    CAS  Google Scholar 

  76. Wang J, Chen J, Konstantinov K, Zhao L, Ng SH, Wang GX, Guo ZP, Liu HK (2006) Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim Acta 51:4634–4638

    CAS  Google Scholar 

  77. Fu YZ, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries. J Phys Chem C 116:8910–8915

    CAS  Google Scholar 

  78. Wu F, Chen JZ, Chen RJ, Wu SX, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063

    CAS  Google Scholar 

  79. Li WY, Zhang QF, Zheng GY, Seh ZW, Yao HB, Cui Y (2013) Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett 13:5534–5540

    CAS  PubMed  Google Scholar 

  80. Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Engelhard MH, Zhang J-G, Liu J, Xiao J (2014) Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14:2345–2352

    CAS  PubMed  Google Scholar 

  81. Tang H, Li W, Pan L, Tu K, Du F, Qiu T, Yang J, Cullen CP, McEvoy N, Zhang C (2019) A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li–S batteries. Adv Funct Mater 29:1901907

    Google Scholar 

  82. Wang Z, Wang B, Yang Y, Cui Y, Wang Z, Chen B, Qian G (2015) Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 7:20999–21004

    CAS  PubMed  Google Scholar 

  83. Wang Z, Li X, Cui Y, Yang Y, Pan H, Wang Z, Wu C, Chen B, Qian G (2013) A metal-organic framework with open metal sites for enhanced confinement of sulfur and lithium-sulfur battery of long cycling life. Cryst Growth Des 13:5116–5120

    CAS  Google Scholar 

  84. Zhang Z, An Y, Feng J, Ci L, Duan B, Huang W, Dong C, Xiong S (2016) Carbon coated copper sulfides nanosheets synthesized via directly sulfurizing metal-organic frameworks for lithium batteries. Mater Lett 181:340–344

    CAS  Google Scholar 

  85. Hong X-J, Tan T-X, Guo Y-K, Tang X-Y, Wang J-Y, Qin W, Cai Y-P (2018) Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 10:2774–2780

    CAS  PubMed  Google Scholar 

  86. Hou Y, Mao H, Xu L (2017) MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res 10:344–353

    CAS  Google Scholar 

  87. Park H, Siegel DJ (2017) Tuning the Adsorption of polysulfides in lithium-sulfur batteries with metal-organic frameworks. Chem Mater 29:4932–4939

    CAS  Google Scholar 

  88. Jiang GY, Zheng N, Chen X, Ding GY, Li YH, Sun FG, Li YS (2019) In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J 373:1309–1318

    CAS  Google Scholar 

  89. Zhao YM, Zhao JX (2017) Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Appl Surf Sci 412:591–598

    CAS  Google Scholar 

  90. Wang DS, Li F, Lian RQ, Xu J, Kan DX, Liu YH, Chen G, Gogotsi Y, Wei YJ (2019) A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 13:11078–11086

    CAS  PubMed  Google Scholar 

  91. Zhang CF, Anasori B, Seral-Ascaso A, Park SH, McEvoy N, Shmeliov A, Duesberg GS, Coleman JN, Gogotsi Y, Nicolosi V (2017) Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 29:1702678

    Google Scholar 

  92. Li N, Meng QQ, Zhu XH, Li Z, Ma JL, Huang CX, Song J, Fan J (2019) Lattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: a DFT study. Nanoscale 11:8485–8493

    CAS  PubMed  Google Scholar 

  93. Bao WZ, Su DW, Zhang WX, Guo X, Wang GX (2016) 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv Funct Mater 26:8746–8756

    CAS  Google Scholar 

  94. Lee JT, Zhao YY, Thieme S, Kim H, Oschatz M, Borchardt L, Magasinski A, Cho WI, Kaskel S, Yushin G (2013) Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Adv Mater 25:4573–4579

    CAS  PubMed  Google Scholar 

  95. Cui ZM, Zu CX, Zhou WD, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28:6926-+

    CAS  PubMed  Google Scholar 

  96. Zhou GM, Zhao YB, Manthiram A (2015) Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv Energy Mater 5:1402263

    Google Scholar 

  97. Song JX, Gordin ML, Xu T, Chen SR, Yu ZX, Sohn H, Lu J, Ren Y, Duan YH, Wang DH (2015) Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew Chem Int Ed 54:4325–4329

    CAS  Google Scholar 

  98. Xia G, Su J, Li M, Jiang P, Yang Y, Chen Q (2017) A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J Mater Chem A 5:10321–10327

    CAS  Google Scholar 

  99. Deng WN, Hu AP, Chen XH, Zhang SY, Tang QL, Liu Z, Fan BB, Xiao KK (2016) Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries. J Power Sources 322:138–146

    CAS  Google Scholar 

  100. Yang CP, Yin YX, Ye H, Jiang KC, Zhang J, Guo YG (2014) Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries. ACS Appl Mater Interfaces 6:8789–8795

    CAS  PubMed  Google Scholar 

  101. Wang JL, Yan XF, Zhang Z, Ying HJ, Guo RN, Yang WT, Han WQ (2019) Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv Funct Mater 29:1904819

    Google Scholar 

  102. Sun FG, Wang JT, Chen HC, Li WC, Qiao WM, Long DH, Ling LC (2013) High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries. ACS Appl Mater Interfaces 5:5630–5638

    CAS  PubMed  Google Scholar 

  103. Wu F, Li J, Tian YF, Su YF, Wang J, Yang W, Li N, Chen S, Bao LY (2015) 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Sci Rep 5:13340

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang XW, Gao T, Fan XL, Han FD, Wu YQ, Zhang ZA, Li J, Wang CS (2016) Tailoring surface acidity of metal oxide for better polysulfide entrapment in Li-S batteries. Adv Funct Mater 26:7164–7169

    CAS  Google Scholar 

  105. Song MS, Han SC, Kim HS, Kim JH, Kim KT, Kang YM, Ahn HJ, Dou SX, Lee JY (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151:A791–A795

    CAS  Google Scholar 

  106. Choi YJ, Jung BS, Lee DJ, Jeong JH, Kim KW, Ahn HJ, Cho KK, Gu HB (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scr T129:62–65

    CAS  Google Scholar 

  107. Ji XL, Evers S, Black R, Nazar LF (2011) Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325

    PubMed  Google Scholar 

  108. Seh ZW, Li WY, Cha JJ, Zheng GY, Yang Y, McDowell MT, Hsu PC, Cui Y (2013) fSulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 4:1331

    Google Scholar 

  109. Lei T, Chen W, Huang J, Yan C, Sun H, Wang C, Zhang W, Li Y, Xiong J (2017) Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv Energy Mater 7:1601843

    Google Scholar 

  110. Pang Q, Kundu D, Nazar LF (2016) A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater Horizons 3:130–136

    CAS  Google Scholar 

  111. Li R, Peng H, Wu Q, Zhou X, He J, Shen H, Yang M, Li C (2020) Sandwich-like catalyst–carbon–catalyst trilayer structure as a compact 2D host for highly stable lithium–sulfur batteries. Angew Chem Int Ed 59:12129–12138

    CAS  Google Scholar 

  112. Fan Q, Liu W, Weng Z, Sun YM, Wang HL (2015) Ternary hybrid material for high-performance lithium-sulfur battery. J Am Chem Soc 137:12946–12953

    CAS  PubMed  Google Scholar 

  113. Hu L, Dai C, Liu H, Li Y, Shen B, Chen Y, Bao S-J, Xu M (2018) Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries. Adv Energy Mater 8:1800709

    Google Scholar 

  114. Qu QT, Gao T, Zheng HY, Wang Y, Li XY, Li XX, Chen JM, Han YY, Shao J, Zheng HH (2015) Strong surface-bound sulfur in conductive MoO2 Matrix for enhancing Li-S battery performance. Adv Mater Interfaces 2:1500048

    Google Scholar 

  115. Wang Y, Feng G, Wang Y, Wu Z, Chen Y, Guo X, Zhong B (2020) MoO2 nanoparticles embedded in N-doped hydrangea-like carbon as a sulfur host for high-performance lithium–sulfur batteries. RSC Adv 10:20173–20183

    CAS  Google Scholar 

  116. Sun FG, Wang JT, Long DH, Qiao WM, Ling LC, Lv CX, Cai R (2013) A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. J Mater Chem A 1:13283–13289

    CAS  Google Scholar 

  117. Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J Phys Chem C 116:19653–19658

    CAS  Google Scholar 

  118. Hu NN, Lv XS, Dai Y, Fan LL, Xiong DB, Li XF (2018) SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li-S batteries. ACS Appl Mater Interfaces 10:18665–18674

    CAS  PubMed  Google Scholar 

  119. Cheng H, Wang SP, Tao D, Wang M (2014) Sulfur/Co3O4 nanotube composite with high performances as cathode materials for lithium sulfur batteries. Funct Mater Lett 7:1450020

    Google Scholar 

  120. Lin H, Zhang S, Zhang T, Ye H, Yao Q, Zheng GW, Lee JY (2018) Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium-sulfur batteries. Adv Energy Mater 8:1801868

    Google Scholar 

  121. Yang W, Xiao J, Ma Y, Cui S, Zhang P, Zhai P, Meng L, Wang X, Wei Y, Du Z, Li B, Sun Z, Yang S, Zhang Q, Gong Y (2018) Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries. Adv Energy Mater:1803137

  122. Zhu M, Li S, Liu J, Li B (2019) Promoting polysulfide conversion by V2O3 hollow sphere for enhanced lithium-sulfur battery. Appl Surf Sci 473:1002–1008

    CAS  Google Scholar 

  123. Ponraj R, Kannan AG, Ahn JH, Kim DW (2016) Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide. ACS Appl Mater Interfaces 8:4000–4006

    CAS  PubMed  Google Scholar 

  124. Ma L, Chen R, Zhu G, Hu Y, Wang Y, Chen T, Liu J, Jin Z (2017) Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 11:7274–7283

    CAS  PubMed  Google Scholar 

  125. Zhang J, Gu P, Xu J, Xue HG, Pang H (2016) High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries. Nanoscale 8:18578–18595

    CAS  PubMed  Google Scholar 

  126. Gu XX, Tong CJ, Wen B, Liu LM, Lai C, Zhang SQ (2016) Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni (OH)(2)@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries. Electrochim Acta 196:369–376

    CAS  Google Scholar 

  127. Li X, Lu Y, Hou Z, Zhang W, Zhu Y, Qian Y, Liang J, Qian Y (2016) SnS2- compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries. ACS Appl Mater Interfaces 8:19550–19557

    CAS  PubMed  Google Scholar 

  128. Ma L, Wei SY, Zhuang HLL, Hendrickson KE, Hennig RG, Archer LA (2015) Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur. J Mater Chem A 3:19857–19866

    CAS  Google Scholar 

  129. Xiao D, Li Q, Zhang H, Ma Y, Lu C, Chen C, Liu Y, Yuan S (2017) A sulfur host based on cobalt-graphitic carbon nanocages for high performance lithium-sulfur batteries. J Mater Chem A 5:24901–24908

    CAS  Google Scholar 

  130. Yang M, Hu X, Fang Z, Sun L, Yuan Z, Wang S, Hong W, Chen X, Yu D (2017) Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-Air and Li-S batteries: highly exposed graphitic nitrogen matters. Adv Funct Mater 27:1701971

    Google Scholar 

  131. Cai J, Song Y, Chen X, Sun Z, Yi Y, Sun J, Zhang Q (2020) MOF-derived conductive carbon nitrides for separator-modified Li–S batteries and flexible supercapacitors. J Mater Chem A 8:1757–1766

    CAS  Google Scholar 

  132. Cui GL, Li GR, Luo D, Zhang YG, Zhao Y, Wang DR, Wang JY, Zhang Z, Wang X, Chen ZW (2020) Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 72:104685

    CAS  Google Scholar 

  133. Zhang J, Yu L, Lou XW (2017) Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res 10:4298–4304

    CAS  Google Scholar 

  134. Jiang Y, Liu H, Tan X, Guo L, Zhang J, Liu S, Guo Y, Zhang J, Wang H, Chu W (2017) Monoclinic ZIF-8 nanosheet-derived 2D Carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl Mater Interfaces 9:25239–25249

    CAS  PubMed  Google Scholar 

  135. Zhou S, Liu J, Xie F, Zhao Y, Mei T, Wang Z, Wang X (2020) A “boxes in fibers” strategy to construct a necklace-like conductive network for the high-rate and high-loading lithium-sulfur batteries. J Mater Chem A 8:11327–11336

    CAS  Google Scholar 

  136. Guan L, Hu H, Li L, Pan Y, Zhu Y, Li Q, Guo H, Wang K, Huang Y, Zhang M, Yan Y, Li Z, Teng X, Yang J, Xiao J, Zhang Y, Wang X, Wu M (2020) Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides. ACS Nano 14:6222–6231

    CAS  PubMed  Google Scholar 

  137. Xie J, Li BQ, Peng HJ, Song YW, Zhao M, Chen X, Zhang Q, Huang JQ (2019) Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv Mater 31:1903813

    CAS  Google Scholar 

  138. Zhou G, Zhao S, Wang T, Yang SZ, Johannessen B, Chen H, Liu C, Ye Y, Wu Y, Peng Y, Liu C, Jiang SP, Zhang Q, Cui Y (2020) Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett 20:1252–1261

    CAS  PubMed  Google Scholar 

  139. Zhang LL, Liu DB, Muhammad Z, Wan F, Xie W, Wang YJ, Song L, Niu ZQ, Chen J (2019) Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater 31:1903955

    CAS  Google Scholar 

  140. He YS, Li MJ, Zhang YG, Shan ZZ, Zhao Y, Li JD, Liu GH, Liang CY, Bakenov Z, Li Q (2020) All-purpose electrode design of flexible conductive scaffold toward high-performance Li-S batteries. Adv Funct Mater 30:2000613

    CAS  Google Scholar 

  141. Luo L, Li J, Yaghoobnejad Asl H, Manthiram A (2020) In-situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries. ACS Energy Lett 5:1177–1185

    CAS  Google Scholar 

  142. He J, Bhargav A, Yaghoobnejad Asl H, Chen Y, Manthiram A (2020) 1T′-ReS2 Nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li–S batteries. Adv Energy Mater 10:2001017

    CAS  Google Scholar 

  143. Wu X, Liu N, Wang M, Qiu Y, Guan B, Tian D, Guo Z, Fan L, Zhang N (2019) A class of catalysts of BiOX (X = Cl, Br, I) for Anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries. ACS Nano 13:13109–13115

    CAS  PubMed  Google Scholar 

  144. Shen Z, Zhang Z, Li M, Yuan Y, Zhao Y, Zhang S, Zhong C, Zhu J, Lu J, Zhang H (2020) Rational design of a Ni3N0.85 Electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14:6673–6682

    CAS  PubMed  Google Scholar 

  145. Yuan H, Peng HJ, Li BQ, Xie J, Kong L, Zhao M, Chen X, Huang JQ, Zhang Q (2019) Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv Energy Mater 9:1802768

    Google Scholar 

  146. Cai D, Liu BK, Zhu DH, Chen D, Lu MJ, Cao JM, Wang YH, Huang WH, Shao Y, Tu HR, Han W (2020) Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3D carbon matrix for high-stable and long-cycle-life lithium sulfur batteries. Adv Energy Mater 10:1904273

    CAS  Google Scholar 

  147. Zhao YY, Cai WL, Fang YT, Ao HS, Zhu YC, Qian YT (2019) Sulfur-deficient TiS2-x for promoted polysulfide redox conversion in lithium-sulfur batteries. Chemelectrochem 6:2231–2237

    CAS  Google Scholar 

  148. Luo D, Zhang Z, Li GR, Cheng SB, Li S, Li JD, Gao R, Li M, Sy S, Deng YP, Jiang Y, Zhu YF, Dou HZ, Hu YF, Yu AP, Chen ZW (2020) Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5-x nanocluster toward superior Li-S performance. ACS Nano 14:4849–4860

    CAS  PubMed  Google Scholar 

  149. Lv KZ, Wang PF, Wang C, Shen ZH, Lu ZD, Zhang HG, Zheng MB, He P, Zhou HS (2020) Oxygen-deficient ferric oxide as an electrochemical cathode catalyst for high-energy lithium-sulfur batteries. Small 16:2000870

    CAS  Google Scholar 

  150. Zhang Y, Li G, Wang J, Cui G, Wei X, Shui L, Kempa K, Zhou G, Wang X, Chen Z (2020) Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv Funct Mater 30:2001165

    CAS  Google Scholar 

  151. Wang N, Chen B, Qin KQ, Liu EZ, Shi CS, He CN, Zhao NQ (2019) Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: a study of synergistic adsorption-electrocatalysis function. Nano Energy 60:332–339

    CAS  Google Scholar 

  152. Bhoyate S, Kim J, Lee E, Park B, Lee E, Park J, Oh SH, Kim J, Choi W (2020) Mixed phase 2D Mo0.5W0.5S2 alloy as multi-functional electrocatalyst for the high-performance cathode in Li-S batteries. J Mater Chem A

  153. Zhao M, Peng HJ, Li BQ, Chen X, Xie J, Liu X, Zhang Q, Huang JQ (2020) Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew Chem Int Ed Eng 59:9011–9017

    CAS  Google Scholar 

  154. Cheng Z, Xiao Z, Pan H, Wang S, Wang R (2018) Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv Energy Mater 8:1702337

    Google Scholar 

  155. Wu WY, Chakrabortty S, Chang CKL, Guchhait A, Lin M, Chan Y (2014) Promoting 2D growth in colloidal transition metal sulfide semiconductor nanostructures via halide ions. Chem Mater 26:6120–6126

    CAS  Google Scholar 

  156. Boyjoo Y, Shi HD, Olsson E, Cai Q, Wu ZS, Liu J, Lu GQ (2020) Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries. Adv Energy Mater 10:2000651

    CAS  Google Scholar 

  157. Jin ZS, Zhao M, Lin TN, Liu BQ, Zhang Q, Zhang LY, Chen LH, Li L, Su ZM, Wang CG (2020) Rational design of well-dispersed ultrafine CoS2 nanocrystals in micro-mesoporous carbon spheres with a synergistic effect for high-performance lithium-sulfur batteries. J Mater Chem A 8:10885–10890

    CAS  Google Scholar 

  158. Yu J, Xiao JW, Li AR, Yang Z, Zeng L, Zhang QF, Zhu YJ, Guo L (2020) Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew Chem Int Ed

  159. Xu HH, Manthiram A (2017) Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. Nano Energy 33:124–129

    CAS  Google Scholar 

  160. Jin Z, Liang Z, Zhao M, Zhang Q, Liu B, Zhang L, Chen L, Li L, Wang C (2020) Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem Eng J 394:124983

    CAS  Google Scholar 

  161. Guo D, Zhang Z, Xi B, Yu Z, Zhou Z, Chen X a (2020) Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium–sulfur batteries. J Mater Chem A 8:3834–3844

    CAS  Google Scholar 

  162. Xiao ZB, Yang Z, Zhang LJ, Pan H, Wang RH (2017) Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium sulfur batteries. ACS Nano 11:8488–8498

    CAS  PubMed  Google Scholar 

  163. Chang Z, Dou H, Ding B, Wang J, Wang Y, Hao XD, MacFarlane DR (2017) Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries. J Mater Chem A 5:250–257

    CAS  Google Scholar 

  164. He JR, Luo L, Chen YF, Manthiram A (2017) Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv Mater:29

  165. Ma LB, Chen RP, Zhu GY, Hu Y, Wang YR, Chen T, Liu J, Jin Z (2017) Cerium oxide nanocrystal embedded bimodal microniesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 11:7274–7283

    CAS  PubMed  Google Scholar 

  166. Yao L, Dong XW, Zhang CR, Hu NT, Zhang YF (2018) Metal oxide nanoprism-arrays assembled in N-doped carbon foamy nanoplates that have efficient polysulfide-retention for ultralong-cycle-life lithium-sulfur batteries. J Mater Chem A 6:11260–11269

    CAS  Google Scholar 

  167. Zhao M, Peng HJ, Wei JY, Huang JQ, Li BQ, Yuan H, Zhang Q (2019) Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 4:1900344

    Google Scholar 

  168. Wu X, Liu N, Guan B, Qiu Y, Wang M, Cheng J, Tian D, Fan L, Zhang N, Sun K (2019) Redox mediator: a new strategy in designing cathode for prompting redox process of Li-S batteries. Adv Sci (Weinh) 6:1900958

    CAS  Google Scholar 

  169. Li H, Ma S, Li J, Liu F, Zhou H, Huang Z, Jiao S, Kuang Y (2020) Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries. Energy Storage Mater 26:203–212

    Google Scholar 

  170. Tsao YC, Lee M, Miller EC, Gao GP, Park J, Chen SC, Katsumata T, Tran H, Wang LW, Toney MF, Cui Y, Bao ZN (2019) Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 3:872–884

    CAS  Google Scholar 

  171. Yang Y, Zheng G, Misra S, Nelson J, Toney MF, Cui Y (2012) High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 134:15387–15394

    CAS  PubMed  Google Scholar 

  172. Seh ZW, Wang H, Hsu P-C, Zhang Q, Li W, Zheng G, Yao H, Cui Y (2014) Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ Sci 7:672–676

    CAS  Google Scholar 

  173. Jeong S, Bresser D, Buchholz D, Winter M, Passerini S (2013) Carbon coated lithium sulfide particles for lithium battery cathodes. J Power Sources 235:220–225

    CAS  Google Scholar 

  174. Yang Z, Guo J, Das SK, Yu Y, Zhou Z, Abruña HD, Archer LA (2013) In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries. J Mater Chem A 1:1433–1440

    CAS  Google Scholar 

  175. Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M (2008) All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sources 183:422–426

    CAS  Google Scholar 

  176. Hayashi A, Ohtsubo R, Tatsumisago M (2008) Electrochemical performance of all-solid-state lithium batteries with mechanochemically activated Li2S-Cu composite electrodes. Solid State Ionics 179:1702–1705

    CAS  Google Scholar 

  177. Hayashi A, Komiya R, Tatsumisago M, Minami T (2002) Characterization of Li2S-SiS2-Li3MO3 (M=B Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries. Solid State Ionics 152:285–290

    Google Scholar 

  178. He JR, Chen YF, Lv WQ, Wen KC, Wang ZG, Zhang WL, Li YR, Qin W, He WD (2016) Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li-Te batteries. ACS Nano 10:8837–8842

    CAS  PubMed  Google Scholar 

  179. He JR, Chen YF, Manthiram A (2019) Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater 9:1900584

    Google Scholar 

  180. Zhou GM, Tian HZ, Jin Y, Tao XY, Liu BF, Zhang RF, Seh ZW, Zhuo D, Liu YY, Sun J, Zhao J, Zu CX, Wu DS, Zhang QF, Cui Y (2017) Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc Natl Acad Sci 114:840–845

    CAS  PubMed  Google Scholar 

  181. Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G (2017) A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium-sulfur batteries. Adv Energy Mater 7:1602876

    Google Scholar 

  182. Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D (2014) The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems. J Phys Chem Lett 5:915–918

    CAS  PubMed  Google Scholar 

  183. Liang X, Yun JF, Xu K, Xiang HF, Wang Y, Sun Y, Yu Y (2019) A multi-layered Ti3C2/Li2S composite as cathode material for advanced lithium-sulfur batteries. J Energy Chem 39:176–181

    Google Scholar 

  184. Wang ZY, Zhang N, Yu ML, Liu JS, Wang S, Qiu JS (2019) Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. J Energy Chem 37:183–191

    Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (2019YFC1900602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiao Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Li, Q., Wang, Y. et al. A review of cathode materials in lithium-sulfur batteries. Ionics 26, 5299–5318 (2020). https://doi.org/10.1007/s11581-020-03767-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03767-3

Keywords

Navigation