Skip to main content

Advertisement

Log in

Hydrothermally synthesized bimetallic disulfide CoxNi1-xS2 as high-performance cathode material for lithium thermal battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The hollow microspherical structure cathode materials of bimetallic disulfide CoxNi1-xS2 (x varied from 0.1 to 0.5) for lithium thermal battery were synthesized by hydrothermal method. The structure, morphology, and composition of the hollow CoxNi1-xS2 were evaluated by field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The thermal stability was assessed by differential thermal analyzer (DTA). The thermal battery fabricated with CoxNi1-xS2 as cathode active material and LiB as anode exhibits the good electrochemical performance at 450 °C. Especially when x = 0.1, the initial discharge voltage reached 2.037 V, and specific capacity was 297.4 mA h g−1 at cut-off voltage of 1.5 V during constant current discharge. The bimetal disulfide material also presented advantages of reducing the internal resistance of the single cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Butler P, Wagner C, Guidotti R, Francis I (2004) Long-life, multi-tap thermal battery development. J Power Sources 136:240–245

    Article  CAS  Google Scholar 

  2. Guidotti RA, Reinhardt FW (1998) Characterization of low-melting electrolytes for potential geothermal borehole power supplies: the LiBr-KBr-LiF eutectic. Office of Scientific and Technical Information 05:98–110

  3. Masset P (2006) Iodide-based electrolytes: a promising alternative for thermal batteries. J Power Sources 160:688–697

    Article  CAS  Google Scholar 

  4. Huang X, Liu J, Zeng M, Yang X, Liu X (2019) Effects of different MgO fiber structures on adhesive capacity and ionic migration of Li-Si/LiCl-KCl/FeS2 thermal batteries. Electrochim Acta 324:134918

    Article  CAS  Google Scholar 

  5. Lin F, Wang J, Jia H, Monroe CW, Yang J, NuLi Y (2013) Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials. J Power Sources 223:18–22

    Article  CAS  Google Scholar 

  6. Schoeffert S (2005) Thermal batteries modeling, self-discharge and self-heating. J Power Sources 142:361–369

    Article  CAS  Google Scholar 

  7. Guidotti RA, Masset PJ (2008) Thermally activated (“thermal”) battery technology part IV. Anode materials. J Power Sources 183:388–398

    Article  CAS  Google Scholar 

  8. Guidotti RA, Masset P (2006) Thermally activated (“thermal”) battery technology part I: an overview. J Power Sources 161:1443–1449

    Article  CAS  Google Scholar 

  9. Hillel T, Ein-Eli Y (2013) Copper vanadate as promising high voltage cathodes for Li thermal batteries. J Power Sources 229:112–116

    Article  CAS  Google Scholar 

  10. Guidotti RA, Reinhardt FW (1996) Screening study of mixed transition-metal oxides for use as cathodes in thermal batteries. Electrochem Soc 05:251–254

    Google Scholar 

  11. Huang S-Y, Sodano D, Leonard T, Luiso S, Fedkiw PS (2017) Cobalt-doped iron sulfide as an electrocatalyst for hydrogen evolution. J Electrochem Soc 164:F276–F282

    Article  CAS  Google Scholar 

  12. Masset PJ, Guidotti RA (2008) Thermal activated (“thermal”) battery technology part IIIb. Sulfur and oxide-based cathode materials. J Power Sources 178:456–466

    Article  CAS  Google Scholar 

  13. Ming A (2003) Nanostructured thermal batteries with high power density. J Power Sources 115:360–366

    Article  Google Scholar 

  14. Payne JL, Percival JD, Giagloglou K, Crouch CJ, Carins GM, Smith RI, Gover RKB, Irvine JTS (2019) In situ thermal battery discharge using CoS2 as a cathode material. J Electrochem Soc 166:A2660–A2664

    Article  CAS  Google Scholar 

  15. Ning H, Liu Z, Xie Y, Huang H (2018) CoS2 coatings for improving thermal stability and electrochemical performance of FeS2 cathodes for thermal batteries. J Electrochem Soc 165:A1725–A1733

    Article  CAS  Google Scholar 

  16. Yoder TS, Tussing M, Cloud JE, Yang Y (2015) Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries. J Power Sources 274:685–692

    Article  CAS  Google Scholar 

  17. Choi Y, Cho S, Lee YS (2014) Effect of the addition of carbon black and carbon nanotube to FeS2 cathode on the electrochemical performance of thermal battery. J Ind Eng Chem 20:3584–3589

    Article  CAS  Google Scholar 

  18. Xie S, Deng Y, Mei J, Yang Z, Lau WM, Liu H (2017) Carbon coated CoS2 thermal battery electrode material with enhanced discharge performances and air stability. Electrochim Acta 231:287–293

    Article  CAS  Google Scholar 

  19. Xie S, Deng Y, Me J, Yang Z, Lau WM, Liu H (2016) Facile synthesis of CoS2/CNTs composite and its exploitation in thermal battery fabrication. Compos Part B 93:203–209

    Article  CAS  Google Scholar 

  20. Yu T, Yu Z, Cao Y, Liu H, Liu X, Cui Y, Wang C, Cui Y (2018) Electrochemical performances and air stability of Fe-doped CoS2 cathode materials for thermal batteries. Int J Electrochem Sci 13:7590–7597

    Article  CAS  Google Scholar 

  21. Jin C, Fu L, Ge B, Pu X, Li W, Zhou L (2019) The NiCl2/NiS2@C double active composite cathodes with surface synergistic effects for high-power thermal battery. J Alloys Compd 800:518–524

    Article  CAS  Google Scholar 

  22. Jin C, Zhoua L, Licai F, Zhu J, Li D (2017) Synthesis and discharge performances of NiCl2 by surface modification of carbon coating as cathode material of thermal battery. Appl Surf Sci 402:308–313

    Article  CAS  Google Scholar 

  23. Jin C, Licai F, Zhu J, Yang W, Zhou DLL (2018) A hierarchical carbon modified nano-NiS2 cathode with high thermal stability for a high energy thermal battery. J Mater Chem A 6:7123–7132

    Article  CAS  Google Scholar 

  24. Zhang J, Bai X, Wang T, Xiao W, Xi P, Wang J, Gao D, Wang J (2019) Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett 11:2–13

    Article  CAS  Google Scholar 

  25. Mazin II (2000) Robust half metallicity in FexCo1-xS2. Appl Phys Lett 77:3000–3002

    Article  CAS  Google Scholar 

  26. Kinner T, Bhandari KP, Bastola E, Monahan BM, Haugen NO, Roland PJ, Bigioni TP, Ellingson RJ (2016) Majority carrier type control of cobalt iron sulfide (CoxFe1-xS2) pyrite nanocrystals. J Phys Chem C 120:5706–5713

    Article  CAS  Google Scholar 

  27. Yang SL, Yao HB, Gao MR, Yu SH (2009) Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties. CrystEngComm 11:1383

    Article  CAS  Google Scholar 

  28. Yang Z, Liu X, Feng X, Cui Y, Yang X (2014) Hydrothermal synthesized micro/nano-sized pyrite used as cathode material to improve the electrochemical performance of thermal battery. Electrochem 44:1075–1080

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Natural Science Foundation of Shandong Province (ZR2018MEM017) and Shanghai Science and Technology Committee Rising-Star Program (19QB1403700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Cao or Haiping Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Cao, L., Yuan, G. et al. Hydrothermally synthesized bimetallic disulfide CoxNi1-xS2 as high-performance cathode material for lithium thermal battery. Ionics 26, 4985–4991 (2020). https://doi.org/10.1007/s11581-020-03606-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03606-5

Keywords

Navigation