Skip to main content
Log in

Electrochemical characterization of electrodialysis cation exchange membrane incorporated with graphite nanoparticle for deionization

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, nanocomposite polyvinyl chloride-based heterogeneous cation exchange membranes were fabricated by embedding graphite nanoparticles through solution casting technique. The effects of graphite nanoparticle concentrations in the membrane body on the electrochemical properties of blended membranes were investigated. FESEM and SOM images showed uniform distribution of particles and a uniform surface for the fabricated membranes. XRD patterns showed that the crystallinity of membrane enhanced by the increase of graphite nanoparticle dosage. The obtained results imply that increasing the concentration of graphite nanoparticles in the modified membranes has produced a rougher and a more hydrophobic surface. Membrane potential, transport number, selectivity, flux, and water content for the blended membranes were enhanced initially by increase of graphite nanoparticle concentration up to 2 wt% and after that downward trend found. The electrical resistance of the membranes was reduced by the use of graphite nanoparticles obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275

    Article  CAS  Google Scholar 

  2. Karimi L, Ghassemi A, Zamani Sabzi H (2018) Quantitative studies of electrodialysis performance. Desalination 445:159–169

    Article  CAS  Google Scholar 

  3. Zhong S, Wu W, Wei B, Feng J, Liao S, Li X, Yu Y (2018) Influence of the ions distribution of anion-exchange membranes on electrodialysis. Desalination 437:34–44

    Article  CAS  Google Scholar 

  4. Malek P, Ortiz JM, Schulte-Herbrüggen HMA (2016) Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy. Desalination 377:54–64

    Article  CAS  Google Scholar 

  5. Allioux FM, He L, She F, Hodgson PD, Kong L, Dumée LF (2015) Investigation of hybrid ion-exchange membranes reinforced with non-woven metal meshes for electro-dialysis applications. Sep Purif Technol 147:353–363

    Article  CAS  Google Scholar 

  6. Xu T, Huang C (2008) Electrodialysis-based separation technologies: a critical review. AICHE J 54:3147–3159

    Article  CAS  Google Scholar 

  7. Strathmann H, Grabowski A, Eigenberger G (2013) Ion-exchange membranes in the chemical process industry. Ind Eng Chem Res 52:10364–10379

    Article  CAS  Google Scholar 

  8. Fan H, Yip NY (2018) Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. J Membr Sci 573:668–681

    Article  CAS  Google Scholar 

  9. Hosseini SM, Jashni E, Habibi M, Van der Bruggen B (2018) Fabrication of novel electrodialysis heterogeneous ion exchange membranes by incorporating PANI/GO functionalized composite nanoplates. Ionics 24:1789–1801

    Article  CAS  Google Scholar 

  10. Hosseini SM, Hamidi AR, Moghadassi AR, Koranian P, Madaeni SS (2015) Fabrication of novel mixed matrix electrodialysis heterogeneous ion-exchange membranes modified by Ilmenite (FeTiO3): electrochemical and ionic transport characteristics. Ionics 21:437–447

    Article  CAS  Google Scholar 

  11. Hosseini SM, Rafiei N, Salabat A, Ahmadi A (2018) Fabrication of new type of barium ferrite/copper oxide composite nanoparticles blended polyvinylchloride based heterogeneous ion exchange membrane. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.06.001

  12. Liu G, Jin W, Xu N (2015) Graphene-based membranes. Chem Soc Rev 44:5016–5030

    Article  CAS  PubMed  Google Scholar 

  13. Yin J, Zhu G, Deng B (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. Journal of Membrane Science 437:237–248

    Article  CAS  Google Scholar 

  14. Ong C, Goh P, Lau W, Misdan N, Ismail A (2016) Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination 393:2–15

    Article  CAS  Google Scholar 

  15. Hebbar RS, Isloor AM, Asiri AM (2017) Carbon nanotube-and graphene-based advanced membrane materials for desalination. Environ Chem Lett 15:643–671

    Article  CAS  Google Scholar 

  16. Ganesh B, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313:199–207

    Article  CAS  Google Scholar 

  17. Mi B (2014) Graphene oxide membranes for ionic and molecular sieving. Science 343:740–742

    Article  CAS  PubMed  Google Scholar 

  18. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  19. Liu B, Zhang D, Li X, Heb Z, Guo X, Liu Z, Guo Q (2018) Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites. Alloys Compd 766:382–390

    Article  CAS  Google Scholar 

  20. Qui Çonero D, Frontera A, Garau C, Ballester P, Costa A, Deyà PM (2006) Interplay between cation– π, anion– π and π – π interactions. Angew Chem 7:2487–2491

    Google Scholar 

  21. Konicki W, Hełminiak A, Arabczyk W, Mijowska E (2018) Adsorption of cationic dyes onto Fe@graphite core-shell magnetic nanocomposite: equilibrium, kinetics and thermodynamics. Chem Eng Res Des 129:259–270

    Article  CAS  Google Scholar 

  22. Li X, Wang Z, Lu H, Zhao C, Na H, Zhao C (2005) Electrochemical properties of sulfonated PEEK used for ion exchange membranes. Journal of Membrane Science 254:147–155

    Article  CAS  Google Scholar 

  23. Hosseini SM, Jashni E, Habibi M, Nemati M, Van der Bruggen B (2017) Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization. J Membr Sci 541:641–652

    Article  CAS  Google Scholar 

  24. Mc Crum NG, Buckley CP, Bucknall CB (1997) Principles of Polymer Engineering, 2nd edition. Oxford University Press, England

  25. Tanaka Y (2007) Ion exchange membranes: fundamentals and applications, Membrane Science and Technology. Elsevier Science & Technology

  26. Khan J, Tripathi BP, Saxena A, Shahi VK (2007) Electrochemical membrane reactor: in situ separation and recovery of chromic acid and metal ions. Electrochim Acta 52:6719–6727

    Article  CAS  Google Scholar 

  27. Hwanga GJ, Ohyab H, Nagai T (1999) Ion exchange membrane based on block copolymers. Part III: preparation of cation exchange membrane. J Membr Sci 156:61–65

    Article  Google Scholar 

  28. Nagarale RK, Shahi VK, Thampy SK, Rangarajan R (2004) Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation exchange membranes. Reactive & Functional Polymer 61:131–138

    Article  CAS  Google Scholar 

  29. Barragaan VM, Bauza CR (1999) Membrane potentials and electrolyte permeation in a cation-exchange membrane. J Membr Sci 154:261–272

    Article  Google Scholar 

  30. Gohil GS, Binsu VV, Shahi VK (2006) Preparation and characterization of monovalent ion selective polypyrrole composite ion exchange membranes. J Membr Sci 280:210–218

    Article  CAS  Google Scholar 

  31. Hosseini SM, Sohrabnejad S, Nabiyouni G, Jashni E, Van der Bruggen B, Ahmadi A (2019) Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis. J Membr Sci 583:292–300

    Article  CAS  Google Scholar 

  32. Nagarale RK, Shahi VK, Rangarajan R (2005) Preparation of polyvinyl alcohol-silica hybrid heterogeneous anion-exchange membranes by sol-gel method and their characterization. J Membr Sci 248:37–44

    Article  CAS  Google Scholar 

  33. Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130

    Article  CAS  Google Scholar 

  34. Bermudez JM, Menendez JA, Arenillas A, Martínez-Palou R, Romero AA, Luque R (2015) Graphene oxide-catalysed oxidation reaction of unsaturated compounds under microwave irradiation. Catal Commun 72:133–137

    Article  CAS  Google Scholar 

  35. He G, Li Z, Zhao J, Wang S, Wu H, Guiver MD, Jiang Z (2015) Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives. Adv Mater 27:5280–5295

    Article  CAS  PubMed  Google Scholar 

  36. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    Article  CAS  Google Scholar 

  37. Raghavender AT, Hong NH, Lee KJ, Jung MH, Skoko Z, Vasilevskiy M, Cerqueira MF, Samantilleke AP (2013) Nano-ilmenite FeTiO3: synthesis and characterization. J Magn Magn Mater 331:129–132

    Article  CAS  Google Scholar 

  38. Hosseini SM, Madaeni SS, Khodabakhshi AR (2010) Preparation and characterization of PC/SBR heterogeneous cation exchange membrane filled with carbon nano-tubes. Journal of Membrane Science 362:550–559

    Article  CAS  Google Scholar 

  39. Fujii T, Yamashita M, Fujimori S, Saitoh Y, Nakamura T, Kobayashi K, Takada J (2007) Large magnetic polarization of Ti4+ ions in FeTiO3. J Magn Magn Mater 310:e555–e557

    Article  CAS  Google Scholar 

  40. Kang MS, Choi YJ, Choi IJ, Yoon TH, Moon SH (2003) Electrochemical characterization of sulfonated poly (arylene ether sulphone) (S-PES) cation-exchange membranes. J Membr Sci 216:39–53

    Article  CAS  Google Scholar 

  41. Lucas X, Bauzá A, Frontera A, Quiñonero D (2016) A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects. Chem Sci 7:1038–1050

    Article  CAS  PubMed  Google Scholar 

  42. Escalona-Villalpando RA, Gurrola MP, Trejo G, Guerra-Balcázar M, Ledesma García J, Arriag LG (2018) Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation. J Electroanal Chem 816:92–98

    Article  CAS  Google Scholar 

  43. Hosseini SM, Jashni E, Jafari MR, Van der Bruggen B, Shahedi Z (2018) Nanocomposite polyvinyl chloride-based heterogeneous cation exchange membrane prepared by synthesized ZnQ2 nanoparticles: ionic behavior and morphological characterization. J Membr Sci 560:1–10

    Article  CAS  Google Scholar 

  44. Hosseini SM, Alibakhshi H, Khodabakhshi A, Nemati M (2018) Enhancing electrochemical performance of heterogeneous cation exchange membranes by using super activated carbon nanoparticles. J Pet Sci Technol 8(3):14–29

    CAS  Google Scholar 

  45. Klaysom C, Moon SH, Ladewig BP, Max Lu GQ, Wang L (2011) Preparation of porous ion-exchange membranes (IEMs) and their characterizations. J Membr Sci 371:37–44

    Article  CAS  Google Scholar 

  46. Hosseini SM, Rafiei S, Hamidi AR, Moghadassi AR, Madaeni SS (2014) Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: ionic transport property in desalination. Desalination 351:138–144

    Article  CAS  Google Scholar 

  47. Hosseini SM, Nemati M, Jeddi F, Salehi E, Khodabakhshi AR, Madaeni SS (2015) Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: mono/bivalent ionic transport property in desalination. Desalination 359:167–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Arak University for the financial support during this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Hosseini or J. N. Shen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.M., Chehreh, M., Jashni, E. et al. Electrochemical characterization of electrodialysis cation exchange membrane incorporated with graphite nanoparticle for deionization. Ionics 26, 1525–1535 (2020). https://doi.org/10.1007/s11581-019-03334-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03334-5

Keywords

Navigation