Skip to main content

Advertisement

Log in

Cu3Ge coated by nitrogen-doped carbon nanorods as advanced sodium-ion battery anodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The sodium storage performance of Ge-based materials suffers from poor cycling stability caused by the volume variation and collapse of the structure during cycling process. In this work, Cu3Ge coated by nitrogen-doped carbon (Cu3Ge-NC) nanorods are prepared by annealing the mixture of CuGeO3 nanowires and polyacrylonitrile which acts as nitrogen and carbon source. As anode materials for sodium ion batteries, the outside carbon shell inhibits the serious volume change caused by Na+ insertion/extraction, and the Cu3Ge alloy enhances the sodiation capacity with rapid electron transfer and fast reaction kinetics. Corresponding kinetic analysis indicates pseudocapacitive behaviors play a dominant role in the total capacity at high rates. Hence, the Cu3Ge-NC exhibits favorable rate capability and cycling stability, which delivers a reversible capacity of 160 mAh g−1 for 500 cycles at a current density of 100 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hao J, Zhang J, Xia G, Liu Y, Zheng Y, Zhang W, Tang Y, Pang WK, Guo Z (2018) Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 12(10):10430–10438

    Article  CAS  Google Scholar 

  2. Hu Z, Tai Z, Liu Q, Wang S-W, Jin H, Wang S, Lai W, Chen M, Li L, Chen L, Tao Z, Chou S-L (2019) Ultrathin 2D TiS2 nanosheets for high capacity and long-life sodium ion batteries. Adv Energy Mater 9(8):1803210

    Article  Google Scholar 

  3. Gao D, Luo S, Zhang Y, Liu J, Wu H, Wang S, He P (2018) Mn3O4/carbon nanotubes nanocomposites as improved anode materials for lithium-ion batteries. J Solid State Electrochem 22(11):3409–3417

    Article  CAS  Google Scholar 

  4. Fu L, Wang X, Ma J, Zhang C, He J, Xu H, Chai J, Li S, Chai F, Cui G (2017) Graphene-encapsulated copper tin sulfide submicron spheres as high-capacity binder-free anode for lithium-ion batteries. ChemElectroChem 4(5):1124–1129

    Article  CAS  Google Scholar 

  5. Wang X, Fan L, Gong D, Zhu J, Zhang Q, Lu B (2016) Core-Shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv Funct Mater 26(7):1104–1111

    Article  CAS  Google Scholar 

  6. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y (2011) Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Inter 3(11):4165–4168

    Article  CAS  Google Scholar 

  7. Zhao Q, Bi R, Cui J, Yang X, Zhang L (2018) TiO2–x Nanocages anchored in N-doped carbon fiber films as a flexible anode for high-energy sodium-ion batteries. ACS Appl Energy Mater 1(9):4459–4466

    Article  CAS  Google Scholar 

  8. Yang J, Zhou X, Wu D, Zhao X, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29(6):1604108

    Article  Google Scholar 

  9. Zhou H, Zhang R, Song S, Xiao C, Gao G, Ding S (2018) Dopamine-assisted synthesis of MoS2 nanosheets on carbon nanotube for improved lithium and sodium storage properties. ACS Appl Energy Mater 1(9):5112–5118

    Article  CAS  Google Scholar 

  10. Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27(47):7861–7866

    Article  CAS  Google Scholar 

  11. Deng M, Li S, Hong W, Jiang Y, Xu W, Shuai H, Zou G, Hu Y, Hou H, Wang W, Ji X (2019) Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater Chem Phys 223:46–52

    Article  CAS  Google Scholar 

  12. Zhang H, Ming H, Zhang W, Cao G, Yang Y (2017) Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery. ACS Appl Mater Interfaces 9(28):23766–23774

    Article  CAS  Google Scholar 

  13. Yin F, Liu Z, Zhao Y, Feng Y, Zhang Y (2017) Electrochemical properties of an Na4Mn9O18-reduced graphene oxide composite synthesized via spray drying for an aqueous sodium-ion battery. Nanomaterials 7(9):253

    Article  Google Scholar 

  14. Abel PR, Fields MG, Heller A, Mullins CB (2014) Tin-germanium alloys as anode materials for sodium-ion batteries. ACS Appl Mater Interfaces 6(18):15860–15867

    Article  CAS  Google Scholar 

  15. Wang Z, Zhang X, Yan Y, Zhang Y, Wang Y, Qin C, Bakenov Z (2019) Nanoporous GeO2/Cu/Cu2O network synthesized by dealloying method for stable Li-ion storage. Electrochim Acta 300:363–372

    Article  CAS  Google Scholar 

  16. Kajita T, Itoh T (2016) Electrochemical sodium storage in amorphous GeOx powder. Electrochim Acta 195:192–198

    Article  CAS  Google Scholar 

  17. Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44

    Article  CAS  Google Scholar 

  18. Qin W, Chen T, Hu B, Sun Z, Pan L (2015) GeO2 decorated reduced graphene oxide as anode material of sodium ion battery. Electrochim Acta 173:193–199

    Article  CAS  Google Scholar 

  19. Han J, Qin J, Guo L, Qin K, Zhao N, Shi C, Liu E, He F, Ma L, He C (2018) Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries. Appl Surf Sci 427:670–679

    Article  CAS  Google Scholar 

  20. Lim YR, Jung CS, Im HS, Park K, Park J, Cho WI, Cha EH (2016) Zn2GeO4 and Zn2SnO4 nanowires for high-capacity lithium- and sodium-ion batteries. J Mater Chem A 4(27):10691–10699

    Article  CAS  Google Scholar 

  21. Li W, Ke L, Wei Y, Guo S, Gan L, Li H, Zhai T, Zhou H (2017) Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. J Mater Chem A 5(9):4413–4420

    Article  CAS  Google Scholar 

  22. Liu Z, Lu T, Song T, Yu X-Y, Lou XW, Paik U (2017) Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ Sci 10(7):1576–1580

    Article  Google Scholar 

  23. Wang Y, Wang Y, Wang YX, Feng X, Chen W, Qian J, Ai X, Yang H, Cao Y (2019) In situ formation of Co9S8 nanoclusters in sulfur-doped carbon foam as a sustainable and high-rate sodium-ion anode. ACS Appl Mater Interfaces 11(21):19218–19226

    Article  CAS  Google Scholar 

  24. Jiang Y, Zou G, Hong W, Zhang Y, Zhang Y, Shuai H, Xu W, Hou H, Ji X (2018) N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale 10(39):18786–18794

    Article  CAS  Google Scholar 

  25. Zheng Z, Wu HH, Chen H, Cheng Y, Zhang Q, Xie Q, Wang L, Zhang K, Wang MS, Peng DL, Zeng XC (2018) Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 10(47):22203–22214

    Article  CAS  Google Scholar 

  26. Zhang C, Chai F, Fu L, Hu P, Pang S, Cui G (2015) Lithium storage in a highly conductive Cu3Ge boosted Ge/graphene aerogel. J Mater Chem A 3(45):22552–22556

    Article  CAS  Google Scholar 

  27. Dong Y, Pei L, Chu X, Zhang W, Zhang Q (2010) Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochim Acta 55(18):5135–5141

    Article  CAS  Google Scholar 

  28. Oh SM, Hwang JY, Yoon CS, Lu J, Amine K, Belharouak I, Sun YK (2014) High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl Mater Interfaces 6(14):11295–11301

    Article  CAS  Google Scholar 

  29. Xie F, Zhang L, Su D, Jaroniec M, Qiao SZ (2017) Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv Mater 29(24):1700989

    Article  Google Scholar 

  30. Li W, Feng X, Zhang Z, Jin X, Liu D, Zhang Y (2018) A controllable surface etching strategy for well-defined spiny yolk@Shell CuO@CeO2 cubes and their catalytic performance boost. Adv Funct Mater 28(49):1802559

    Article  Google Scholar 

  31. Fu L, Zhang C, Chen B, Zhang Z, Wang X, Zhao J, He J, Du H, Cui G (2017) Graphene boosted Cu2GeS3 for advanced lithium-ion batteries. Inorg Chem Front 4(3):541–546

    Article  CAS  Google Scholar 

  32. Chen Y, Li J, Lai Y, Yin M, Zhang Z (2018) Nanospace confined N,P co-doped carbon foams as anode for highly reversible and high capacity sodium ions batteries. J Electroanal Chem 810:207–215

    Article  CAS  Google Scholar 

  33. Liu XY, Lin N, Xu KL, Han Y, Lu Y, Zhao YY, Zhou JB, Yi Z, Cao CH, Qian YT (2018) Cu3Ge/Ge@C nanocomposites crosslinked by the in situ formed carbon nanotubes for high-rate lithium storage. Chem Eng J 352:206–213

    Article  CAS  Google Scholar 

  34. Fu L, Bi Z, Wei B, Huang L, Zhang X, Chen Z, Liao H, Li M, Shang C, Wang X (2018) Flower-like Cu2SnS3 nanostructure materials with high crystallinity for sodium storage. Nanomaterials 8(7):475

    Article  Google Scholar 

  35. Liu T, Li Y, Zhao L, Zheng F, Guo Y, Li Y, Pan Q, Liu Y, Hu J, Yang C (2019) In situ fabrication of carbon-encapsulated Fe7X8 (X = S, Se) for enhanced sodium storage. ACS Appl Mater Interfaces 11(21):19040–19047

    Article  CAS  Google Scholar 

  36. Song X, Li J, Li Z, Xiao Q, Lei G, Hu Z, Ding Y, Kheimeh Sari HM, Li X (2019) Superior sodium storage of carbon-coated NaV6O15 nanotube cathode: pseudocapacitance versus intercalation. ACS Appl Mater Interfaces 11(11):10631–10641

    Article  CAS  Google Scholar 

  37. Fang Y, Yu XY, Lou XWD (2018) Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv Mater 30(21):1706668

    Article  Google Scholar 

  38. Chen W, Qi S, Yu M, Feng X, Cui S, Zhang J, Mi L (2017) Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries. Electrochim Acta 230:1–9

    Article  CAS  Google Scholar 

  39. Hong W, Ge P, Jiang Y, Yang L, Tian Y, Zou G, Cao X, Hou H, Ji X (2019) Yolk-Shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interfaces 11(11):10829–10840

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China Program (No. 51602111), the Natural Science Foundation of Guangdong Province (2018A030313739), Cultivation project of National Engineering Technology Center (2017B090903008), Xijiang R&D Team (X.W.), Guangdong Provincial Grant (2017A050506009), Special Fund Project of Science and Technology Application in Guangdong (2017B020240002) and 111 projects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoqun Shang or Xin Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Shang, C., Huang, L. et al. Cu3Ge coated by nitrogen-doped carbon nanorods as advanced sodium-ion battery anodes. Ionics 26, 719–726 (2020). https://doi.org/10.1007/s11581-019-03230-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03230-y

Keywords

Navigation