Skip to main content
Log in

Conductivity properties of lanthanide-co-doped ceria-based solid oxide electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The doped ceria has drawn much attention as a prospective electrolyte material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The ionic conductivity of the ceria-based electrolytes was directly influenced by the valence state and type of the doped ions. Gd3+- and Nd3+-co-doped ceria–based materials (Ce0.80Gd0.2-xNdxO1.90) were prepared using the Pechini method. Co-doped samples were sintered at 1400 °C for 6 h. Structures of the samples were studied utilizing X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. XRD patterns showed that all samples have a fluorite-type crystal structure similar to pristine ceria. Electrochemical impedance spectroscopy (EIS) was used to measure the total ionic conductivities of co-doped ceria electrolytes at 300–800 °C. EIS results demonstrated that Ce0.80Gd0.12Nd0.08O1.90 had the highest total conductivity at 800 °C and the lowest activation energy. It can be deduced that co-doping with suitable rare earth elements can further enhance the electrical properties of ceria-based electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83(1–2):1–16

    Article  CAS  Google Scholar 

  2. Steele BCH (2000) Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129:95–110

    Article  CAS  Google Scholar 

  3. Kilner JA (2000) Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129(1–4):13–23

    Article  CAS  Google Scholar 

  4. Yoshida H, Inagaki T, Miura K, Inaba M, Ogumi Z (2003) Density functional theory calculation on the effect of local structure of doped ceria on ionic conductivity. Solid State Ionics 160(1–2):109–116

    Article  CAS  Google Scholar 

  5. Kamiya M, Shimada E, Ikuma Y (2001) Oxygen self-diffusion in cerium oxide doped with Nd. J Mater Res 16(1):179–184

    Article  CAS  Google Scholar 

  6. Omar S, Wachsman ED, Jones JL, Nino JC (2009) Crystal structure–ionic conductivity relationships in doped ceria systems. J Am Ceram Soc 92(11):2674–2681

    Article  CAS  Google Scholar 

  7. Mori T, Drennan J, Lee JH, Li JG, Ikegami T (2002) Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics 154(155):461–466

    Article  Google Scholar 

  8. Kumar VP, Reddy YS, Kistaiah P, Prasad G, Reddy CV (2008) Thermal and electrical properties of rare-earth co-doped ceria ceramics. Mater Chem Phys 112(2):711–718

    Article  Google Scholar 

  9. Ramesh S, Reddy CV (2009) Electrical properties of co-doped ceria electrolyte Ce0.8−xGd0.2SrxO2−δ (0.0≤x≤0.1). Acta Phys Polon A 115(5):909–913

    Article  CAS  Google Scholar 

  10. Ramesh S, Kumar VP, Kistaiah P, Reddy CV (2010) Preparation, characterization and thermo electrical properties of co-doped Ce0.8−xSm0.2CaxO2−δ materials. Solid State Ionics 181(1–2):86–91

    Article  CAS  Google Scholar 

  11. Wang FY, Wan BZ, Cheng S (2005) Study on Gd3+ and Sm3+ co-doped ceria-based electrolytes. J Solid State Electrochem 9(3):168–173

    Article  Google Scholar 

  12. Wang FY, Chen S, Wang Q, Yu S, Cheng S (2004) Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Catal Today 97(2–3):189–194

    Article  CAS  Google Scholar 

  13. Tadokoro SK, Muccillo ENS (2006) Effect of solute dispersion on microstructure and electrical conductivity of Ce0.85Y0.13Pr0.02O2−δ solid electrolyte. J Power Sources 154(1):1–7

    Article  CAS  Google Scholar 

  14. Guan X, Zhou H, Liu Z, Wang Y, Zhang J (2008) High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. Mater Res Bull 43(4):1046–1054

    Article  CAS  Google Scholar 

  15. Sha X, Lü Z, Huang X, Miao J, Ding Z (2007) Study on La and Y co-doped ceria-based electrolyte materials. J Alloys Compd 428(1–2):59–64

    Article  CAS  Google Scholar 

  16. Banerjee S, Devi PS, Topwal D, Mandal S, Menon K (2007) Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: unique effect of calcium co-doping. Adv Funct Mater 17(15):2847–2854

    Article  CAS  Google Scholar 

  17. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Optimization of ionic conductivity in doped ceria. Proc Natl Acad Sci USA(PNAS) 103(10):3518–3521

    Article  CAS  Google Scholar 

  18. Arabacı A, Öksüzömer MF (2012) Preparation and characterization of 10 mol % Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceram Int 38:6509–6515

    Article  Google Scholar 

  19. Choi K-H, Choi Y-G, Park M-W, Kodash VY, Groza JR, Lee J-S (2008) Effects of alumina additions on sintering behavior of Ce0.8Sm0.2O1.9 ceramics synthesized by Pechini method. J Alloys Compd 463:484–487

    Article  CAS  Google Scholar 

  20. Channa K, De Silva R, Kaseman BJ, Bayless DJ (2011) Silver (Ag) as anode and cathode current collectors in high temperature planar solid oxide fuel cells. Int J Hydrog Energy 3(6):779–786

    Google Scholar 

  21. Xu HM, Yan HG, Chen ZH (2008) Low-temperature combustion synthesis and sintering of nanosized Ce0.8Y0.2O1.9 powders. Mater Charact 59(3):301–305

    Article  CAS  Google Scholar 

  22. Khalil KMS, Elkabee LA, Murphy B (2005) Preparation and characterization of thermally stable porous ceria aggregates formed via a sol-gel process of ultrasonically dispersed cerium (IV) isopropoxide. Microporous Mesoporous Mater 78(1):83–89

    Article  CAS  Google Scholar 

  23. Khakpour Z, Youzbashi AA, Maghsoudipour A, Ahmadi K (2011) Synthesis of nanosized gadolinium doped ceria solid solution by high energy ball milling. Powder Technol 214(1):117–121

    Article  CAS  Google Scholar 

  24. Jeyanthi CE, Siddheswaran R, Medlín R, Chinnu MK, Jayavel R, Rajarajan K (2014) Electrochemical and structural analysis of the RE3+:CeO2 nanopowders from combustion synthesis. J Alloys Compd 614:118–125

    Article  CAS  Google Scholar 

  25. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129(1–2):63–94

    Article  CAS  Google Scholar 

  26. Sameshima S, Ichikawa T, Kawaminami M, Hirata Y (1999) Thermal and mechanical properties of rare earth-doped ceria ceramics. Mater Chem Phys 61(1):31–35

    Article  CAS  Google Scholar 

  27. Zhou XD, Huebner W, Kosacki I, Anderson HU (2002) Microstructure and grain-boundary effect on electrical properties of gadolinium-doped ceria. J Am Ceram Soc 85(7):1757–1762

    Article  CAS  Google Scholar 

  28. Balazs GB, Glass RS (1995) AC impedance studies of rare earth oxide doped ceria. Solid State Ionics 76:155–162

    Article  Google Scholar 

  29. Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178(37–38):1890–1897

    Article  CAS  Google Scholar 

  30. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy theory, experiment, and applications, 2nd edn. Wiley, New Jersey, USA

  31. Torrens RS, Sammes NM, Tompsett GA (1998) Characterization of (CeO2)0.8(GdO1.5)0.2 synthesis during various techniques. Solid State Ionics 111(1–2):9–15

    Article  CAS  Google Scholar 

  32. Fuentes RO, Baker RT (2008) Synthesis and properties of gadolinium-doped ceria solid solutions for IT-SOFC electrolytes. Int J Hydrog Energy 33(13):3480–3484

    Article  CAS  Google Scholar 

  33. Veranitisagul C, Kaewvilai A, Wattanathana W, Koonsaeng N, Traversa E, Laobuthee A (2012) Electrolyte materials for solid oxide fuel cells derived from metal complexes: gadolinia-doped ceria. Ceram Int 38(3):2403–2409

    Article  CAS  Google Scholar 

  34. Bauerle JE (1969) Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids 30(12):2657–2670

    Article  CAS  Google Scholar 

  35. Irvine JTS, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138

    Article  CAS  Google Scholar 

  36. Jang HC, Jung DS, Kim JH, Kang YC, Cho YH, Lee J-H (2010) Characteristics of samaria-doped ceria nanoparticles prepared by spray pyrolysis. Ceram Int 36(2):465–471

    Article  CAS  Google Scholar 

  37. Ou DR, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J (2008) Oxygen-vacancy ordering in lanthanide-doped ceria: dopant-type dependence and structure model. Phys Rev B 77:024108 – 024115

    Article  Google Scholar 

  38. Li B, Liu Y, Wei X, Pan W (2010) Electrical properties of ceria co-doped with Sm3+ and Nd3+. J Power Sources 195(4):969–976

    Article  CAS  Google Scholar 

  39. O'Hayre R, Cha S-W, Colella WG, Prinz FB (2016) Fuel cell fundamentals, 3th edn. John Wiley & Sons, Inc., Hoboken, New Jersey

  40. Shah SI, Li W, Huang C-P, Jung O, Ni C (2002) Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proc Natl Acad Sci USA(PNAS) 99:6482–6486

    Article  CAS  Google Scholar 

  41. Yeh T-H, Chou C-C (2007) Ionic conductivity investigation in samarium and strontium co-doped ceria system. Phys Scr T129:303–307

    Article  CAS  Google Scholar 

  42. Muhammed Ali SA, Anwar M, Abdalla MA, Somalu MR, Muchtar A (2017) Ce0.80Sm0.10Ba0.05Er0.05O2-δ multi-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceram Int 43(1B):1265–1271

    Article  CAS  Google Scholar 

  43. Hong SJ, Virkar AV (1995) Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J Am Ceram Soc 78:433–439

    Article  CAS  Google Scholar 

  44. Anwar M, Muhammed Ali SA, Abdalla MA, Somalu MR, Muchtar A (2017) Effect of sintering temperature on the microstructure and ionic conductivity of Ce0.8Sm0.1Ba0.1O2-δ electrolyte. Process Appl Ceram 11(1):67–74

    Article  CAS  Google Scholar 

  45. Rai A, Mehta P, Omar S (2014) Ionic conduction behavior in SmxNd0.15-xCe0.85O2−δ. Solid State Ionics 263:190–196

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Scientific Research Project Coordination Unit of Istanbul University (grant numbers 23196 and 27690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliye Arabacı.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabacı, A. Conductivity properties of lanthanide-co-doped ceria-based solid oxide electrolytes. Ionics 25, 4841–4850 (2019). https://doi.org/10.1007/s11581-019-03052-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03052-y

Keywords

Navigation