Skip to main content

Advertisement

Log in

Hierarchical Mn-Co sulfide nanosheets on nickel foam by electrochemical co-deposition for high-performance pseudocapacitors

Ionics Aims and scope Submit manuscript

Abstract

In this work, we report an electrochemical co-deposition of binary metallic manganese-cobalt sulfides with tailored molar ratio of Mn and Co ions on Ni-foam substrates, which show 3-dimensinal (3D) hierarchical porous structure. Benefiting from synergistic effect and dual energy storage mechanism of manganese sulfide and cobalt sulfide, the optimal hierarchical Mn-Co sulfide nanosheet electrode exhibits areal capacitance ~ 1.724 F cm−2 at current density 1 mA cm−2 and excellent capacitance stability (65.15% capacitance retention at the current density of 5 mA cm−2 after 5000 cycles). The superior electrochemical performance might be attributed to highly conductive, 3D mesoporous framework of Ni foam, resulting in fast electron and ion transport from the electroactive materials to current collector as well as large amount of active sites. Furthermore, an asymmetric supercapacitor is also assembled, delivering an energy density of 27.6 Wh kg−1 at a power density of 645.2 W kg−1. The excellent electrochemical performance of the binder-free Mn-Co sulfide electrodes renders them as a promising electrode material for supercapacitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zhang S, Zhu J, Qing Y, Wang L, Zhao J, Li J, Tian W, Jia D, Fan Z (2018) Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv Funct Mater 28:1805898

    Article  CAS  Google Scholar 

  2. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762

    Article  CAS  Google Scholar 

  3. Yu Z, Cheng Z, Tai Z, Wang X, Subramaniyam CM, Fang C, Al-Rubaye S, Wang X, Dou S (2016) Tuning the morphology of Co3O4 on Ni foam for supercapacitor application. RSC Adv 6:45783–45790

    Article  CAS  Google Scholar 

  4. Guan C, Liu X, Ren W, Li X, Cheng C, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater 7:1602391

    Article  CAS  Google Scholar 

  5. Xu J, Sun Y, Lu M, Wang L, Zhang J, Qian J, Liu X (2018) Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem Eng J 334:1466–1476

    Article  CAS  Google Scholar 

  6. Yan M, Yao Y, Wen J, Long L, Kong M, Zhang G, Liao X, Yin G, Huang Z (2016) Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces 8:24525–24535

    Article  CAS  PubMed  Google Scholar 

  7. Hou X, Zhang Y, Dong Q, Hong Y, Liu Y, Wang W, Shao J, Si W, Dong X (2018) Metal organic framework derived core–shell structured Co9S8@N–C@MoS2 nanocubes for supercapacitor. ACS Appl Energy Mater 1:3513–3520

    Article  CAS  Google Scholar 

  8. Nagaraju C, V. V. Muralee Gopi C, Ahn J-W, Kim H-J (2018) Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications. New J Chem 42:12357–12360

    Article  CAS  Google Scholar 

  9. Chen JS, Guan C, Gui Y, Blackwood DJ (2017) Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl Mater Interfaces 9:496–504

    Article  CAS  PubMed  Google Scholar 

  10. Patil AM, Lokhande AC, Shinde PA, Lokhande CD (2018) Flexible asymmetric solid-state supercapacitors by highly efficient 3D nanostructured alpha-MnO2 and h-CuS electrodes. ACS Appl Mater Interfaces 10:16636–16649

    Article  CAS  PubMed  Google Scholar 

  11. Rahimi S, Shahrokhian S, Hosseini H (2018) Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors. J Electroanal Chem 810:78–85

    Article  CAS  Google Scholar 

  12. Zhu X, Liu D, Zheng D, Wang G, Huang X, Harris J, Qu D, Qu D (2018) Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. J Mater Chem A 6:13294–13301

    Article  CAS  Google Scholar 

  13. Meng X, Deng J, Zhu J, Bi H, Kan E, Wang X (2016) Cobalt sulfide/graphene composite hydrogel as electrode for high-performance Pseudocapacitors. Sci Rep 6:21717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  CAS  PubMed  Google Scholar 

  15. Wang W, Yang L, Qu F, Liu Z, Du G, Asiri AM, Yao Y, Chen L, Sun X (2017) A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. J Mater Chem A 5:16585–16589

    Article  CAS  Google Scholar 

  16. Zhang M, Zai J, Liu J, Chen M, Wang Z, Li G, Qian X, Qian L, Yu X (2017) A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans 46:9511–9516

    Article  CAS  PubMed  Google Scholar 

  17. Wie C, Sun Y, Zhan N, Liu M, Zhao L, Cheng C, Zhang D (2017) Preparation of hierarchical MnCo2S4 nanotubes for high-performance supercapacitors and non-enzymatic glucose sensors. ChemistrySelect 2:11154–11159

    Article  CAS  Google Scholar 

  18. Elshahawy AM, Li X, Zhang H, Hu Y, Ho KH, Guan C, Wang J (2017) Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J Mater Chem A 5:7494–7506

    Article  CAS  Google Scholar 

  19. Chen T, Tang Y, Qiao Y, Liu Z, Guo W, Song J, Mu S, Yu S, Zhao Y, Gao F (2016) All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci Rep 6:23289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Q, Jiao L, Du H, Si Y, Wang Y, Yuan H (2012) Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J Mater Chem 22:21387

    Article  CAS  Google Scholar 

  21. Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617

    Article  CAS  Google Scholar 

  22. Yu K, Tang WM, Dai J (2018) Double-layer MnCo2S4@Ni-co-S core/shell nanostructure on nickel foam for high-performance supercapacitor. Phys Status Solidi A 215:1800147

  23. Sahoo S, Naik KK, Rout CS (2015) Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotechnology 26:455401

    Article  CAS  PubMed  Google Scholar 

  24. Sahoo S, Rout CS (2016) Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochim Acta 220:57–66

    Article  CAS  Google Scholar 

  25. Yu W, Jiang X, Ding S, Li BQ (2014) Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors. J Power Sources 256:440–448

    Article  CAS  Google Scholar 

  26. Yu L, Zhang L, Wu HB, Lou XW (2014) Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed Eng 53:3711–3714

    Article  CAS  Google Scholar 

  27. Nguyen VH, Lamiel C, Shim J-J (2016) 3D hierarchical mesoporous NiCo2S4@Ni(OH)2 core–shell nanosheet arrays for high performance supercapacitors. New J Chem 40:4810–4817

    Article  CAS  Google Scholar 

  28. Sahoo S, Mondal R, Late DJ, Rout CS (2017) Electrodeposited nickel cobalt manganese based mixed sulfide nanosheets for high performance supercapacitor application. Microporous Mesoporous Mater 244:101–108

    Article  CAS  Google Scholar 

  29. Sami SK, Siddiqui S, Feroze MT, Chung C-H (2017) Electrodeposited nickel–cobalt sulfide nanosheet on polyacrylonitrile nanofibers: a binder-free electrode for flexible supercapacitors. Mater Res Express 4:116309

    Article  CAS  Google Scholar 

  30. Kannan PK, Hu C, Morgan H, Rout CS (2016) One-step electrodeposition of NiCo2S4 nanosheets on patterned platinum electrodes for non-enzymatic glucose sensing. Chem Asian J 11:1837–1841

    Article  CAS  PubMed  Google Scholar 

  31. Mohammadi A, Arsalani N, Tabrizi AG, Moosavifard SE, Naqshbandi Z, Ghadimi LS (2018) Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem Eng J 334:66–80

    Article  CAS  Google Scholar 

  32. Yuan C, Gao B, Su L, Chen L, Zhang X (2009) Electrochemically induced phase transformation and charge-storage mechanism of amorphous CoSx nanoparticles prepared by interface-hydrothermal method. J Electrochem Soc 156:A199

    Article  CAS  Google Scholar 

  33. Mao X, Wang Z, Kong W, Wang W (2017) Nickel foam supported hierarchical Co9S8 nanostructures for asymmetric supercapacitors. New J Chem 41:1142–1148

    Article  CAS  Google Scholar 

  34. Cheng J, Lu Y, Qiu K, Yan H, Xu J, Han L, Liu X, Luo J, Kim J-K, Luo Y (2015) Hierarchical core/shell NiCo2O4@NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion batteries. Sci Rep 5:12099

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high performance supercapacitor materials. ACS Appl Mater Interfaces 5:8790–8795

    Article  CAS  PubMed  Google Scholar 

  36. Lv L, Xu K, Wang C, Wan H, Ruan Y, Liu J, Zou R, Miao L, Ostrikov K, Lan Y, Jiang J (2016) Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim Acta 216:35–43

    Article  CAS  Google Scholar 

  37. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin. Science 343:1210–1211

    Article  CAS  PubMed  Google Scholar 

  38. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Mater Sci 343:1210–1211

    CAS  Google Scholar 

  39. Wan H, Jiang J, Yu J, Xu K, Miao L, Zhang L, Chen H, Ruan Y (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15:7649

    Article  CAS  Google Scholar 

  40. Lv L, Li Z, Xue K-H, Ruan Y, Ao X, Wan H, Miao X, Zhang B, Jiang J, Wang C, Ostrikov K (2018) Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy 47:275–284

    Article  CAS  Google Scholar 

  41. Lv L, Zha D, Ruan Y, Li Z, Ao X, Zheng J, Jiang J, Chen HM, Chiang WH, Chen J, Wang C (2018) A universal method to engineer metal oxide-metal-carbon interface for highly efficient oxygen reduction. ACS Nano 12:3042–3051

    Article  CAS  PubMed  Google Scholar 

  42. Vijayakumar S, Nagamuthu S, Ryu KS (2018) In situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors. Dalton Trans 47:6722–6728

    Article  CAS  PubMed  Google Scholar 

  43. Gao W, Chen D, Quan H, Zou R, Wang W, Luo X, Guo AL (2017) Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain Chem Eng 5:4144–4153

    Article  CAS  Google Scholar 

  44. Subramani K, Sudhan N, Divya R, Sathish M (2017) All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7:6648–6659

    Article  CAS  Google Scholar 

  45. Rajesh JA, Min B-K, Kim J-H, Kim H, Ahn K-S (2016) Cubic spinel AB2O4 type porous ZnCo2O4 microspheres: facile hydrothermal synthesis and their electrochemical performances in pseudocapacitor. J Electrochem Soc 163:A2418–A2427

    Article  CAS  Google Scholar 

  46. Liu Y, Jiang G, Sun S, Xu B, Zhou J, Zhang Y, Yao J (2018) Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J Alloys Compd 731:560–568

    Article  CAS  Google Scholar 

  47. Chen H, Hsieh C-K, Yang Y, Liu XY, Lin C-H, Tsai C-H, Wen ZQ, Dong F, Zhang YX (2017) Hierarchical nickel cobaltate/manganese dioxide core-shell nanowire arrays on graphene-decorated nickel foam for high-performance supercapacitors. ChemElectroChem 4:2414–2422

    Article  CAS  Google Scholar 

  48. Lin L, Tang S, Zhao S, Peng X, Hu N (2017) Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor. Electrochim Acta 228:175–182

    Article  CAS  Google Scholar 

  49. Zheng Y, Xu J, Yang X, Zhang Y, Shang Y, Hu X (2018) Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121

    Article  CAS  Google Scholar 

  50. Zheng Y, Wang X, Zhao W, Cao X, Liu J (2018) Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors. Chem Eng J 333:603–612

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (61674113, 51622507, and 61471255), Natural Science Foundation of Shanxi Province, China (2016011040), and Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi Province, China (2016138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiying Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Mn-Co sulfides nanosheet arrays are fabricated by a fast and facile electrochemical co-deposition method

• Microstructure and electrochemical properties of the composites are optimized through adjusting ratio of Mn2+ ions to Co2+ ions

• The composite with open 3D net structure displays excellent supercapacitive properties

• The assembled Mn-Co sulfide//AC supercapacitor exhibits a high energy and power densities.

Electronic supplementary material

ESM 1

(DOC 861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Chang, Z., Li, T. et al. Hierarchical Mn-Co sulfide nanosheets on nickel foam by electrochemical co-deposition for high-performance pseudocapacitors. Ionics 25, 3885–3895 (2019). https://doi.org/10.1007/s11581-019-02946-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02946-1

Keywords

Navigation