Skip to main content
Log in

Synergetic effects of LiNi1/3Co1/3Mn1/3O2–LiMn2O4 blended materials on lithium ionic transport for power performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Blended cathode materials generally suffer from capacity loss impacting on their power performance in lithium-ion batteries. This work reports a systematic study of LiNi1/3Co1/3Mn1/3O2–LiMn2O4 blended materials incorporated with characterizations of particles, calculations of charging-discharging characters, and analysis of cyclic voltammetry. A synergetic effect, a capacity increasing at high discharging rate referring to the linear superposition of blending components, is observed in a wide blending ratio for blended materials. The model analysis of charging-discharging characters shows that LiMn2O4 releases more reversible capacity in the blended materials than when it is alone at the same electrochemical condition. An equivalent circuit model is proposed to interpret the electrochemical behaviors showed in electrochemical impedance spectroscopy. The mechanism of particle synergetic effect is attributed to the compensating property of blending components, which improves the inter-particles diffusibility of Li+, therefore reduces the particle impedance of blended materials promoting rate performance. Over the blending range, the scheme LiNi1/3Co1/3Mn1/3O2/LiMn2O4–Blend (50:50 in mass ratio) shows the best performance and highest capacity increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hou P, Wang X, Song D, Shi X, Zhang L, Guo J, Zhang J (2014) Design, synthesis, and performances of double-shelled LiNi0.5Co0.2Mn0.3O2 as cathode for long-life and safe li-ion battery. J Power Sources 265:174–181

    Article  CAS  Google Scholar 

  2. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281

    Article  CAS  Google Scholar 

  3. Kang J, Conlisk AT, Rizzoni G (2014) Integration of capacity fading in an electrochemical model of Li-ion batteries. J Solid State Electrochem 18(9):2425–2434

    Article  CAS  Google Scholar 

  4. Kitao H, Fujihara T, Takeda K, Nakanishi N, Nohma T (2005) High-temperature storage performance of Li-ion batteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material. Electrochem Solid-State Lett 8(2):A87

    Article  CAS  Google Scholar 

  5. Gallagher KG, Kang S-H, Park SU, Han SY (2011) xLi2MnO3·(1−x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources 196(22):9702–9707

    Article  CAS  Google Scholar 

  6. Tran HY, Täubert C, Fleischhammer M, Axmann P, Küppers L, Wohlfahrt-Mehrens M (2011) LiMn2O4 spinel/LiNi0.8Co0.15Al0.05O2 blends as cathode materials for Lithium-ion batteries. J Electrochem Soc 158(5):A556

    Article  CAS  Google Scholar 

  7. Albertus P, Christensen J, Newman J (2009) Experiments on and modeling of positive electrodes with multiple active materials for Lithium-ion batteries. J Electrochem Soc 156(7):A606

    Article  CAS  Google Scholar 

  8. Kobayashi T, Kawasaki N, Kobayashi Y, Shono K, Mita Y, Miyashiro H (2014) A method of separating the capacities of layer and spinel compounds in blended cathode. J Power Sources 245:1–6

    Article  CAS  Google Scholar 

  9. Jung S (2014) Mathematical model of lithium-ion batteries with blended-electrode system. J Power Sources 264:184–194

    Article  CAS  Google Scholar 

  10. Klein A, Axmann P, Wohlfahrt-Mehrens M (2016) Synergetic effects of LiFe0.3Mn0.7PO4–LiMn1.9Al0.1O4 blend electrodes. J Power Sources 309:169–177

    Article  CAS  Google Scholar 

  11. Myung S-T, Cho MH, Hong HT, Kang TH, Kim C-S (2005) Electrochemical evaluation of mixed oxide electrode for li-ion secondary batteries: Li1.1Mn1.9O4 and LiNi0.8Co0.15Al0.05O2. J Power Sources 146(1–2):222–225

    Article  CAS  Google Scholar 

  12. Whitacre JF, Zaghib K, West WC, Ratnakumar BV (2008) Dual active material composite cathode structures for Li-ion batteries. J Power Sources 177(2):528–536

    Article  CAS  Google Scholar 

  13. Manivannan V, Chennabasappa M, Garrett J (2010) Optimization and characterization of lithium ion cathode materials in the system (1 – x – y)LiNi0.8Co0.2O2 • xLi2MnO3 • yLiCoO2. Energies 3(4):847–865

    Article  CAS  Google Scholar 

  14. Gallagher KG, Kang S-H, Park SU, Han SY (2011) xLi2MnO3·(1 − x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources 196(22):9702–9707

    Article  CAS  Google Scholar 

  15. Swiderska-Mocek A (2014) Properties of LiMn2O4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone. J Solid State Electrochem 18(4):1077–1085

    Article  CAS  Google Scholar 

  16. Liu S, Xiong L, He C (2014) Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. J Power Sources 261:285–291

    Article  CAS  Google Scholar 

  17. Zeng YW (2008) Investigation of LiNi1/3Co1/3Mn1/3O2 cathode particles after 300 discharge/charge cycling in a lithium-ion battery by analytical TEM. J Power Sources 183(1):316–324

    Article  CAS  Google Scholar 

  18. Smith AJ, Smith SR, Byrne T, Burns JC, Dahn JR (2012) Synergies in blended LiMn2O4 and Li[Ni1/3Mn1/3Co1/3]O2 positive electrodes. J Electrochem Soc 159(10):A1696–A1701

    Article  CAS  Google Scholar 

  19. Stevens DA, Ying RY, Fathi R, Reimers JN, Harlow JE, Dahn JR (2014) Using high precision Coulometry measurements to compare the degradation mechanisms of NMC/LMO and NMC-only automotive scale pouch cells. J Electrochem Soc 161(9):A1364–A1370

    Article  CAS  Google Scholar 

  20. Nam K-W, Yoon W-S, Shin H, Chung KY, Choi S, Yang X-Q (2009) In situ X-ray diffraction studies of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge–discharge cycling. J Power Sources 192(2):652–659

    Article  CAS  Google Scholar 

  21. Hu E, Bak SM, Senanayake SD, Yang X-Q, Nam K-W, Zhang L, Shao M (2015) Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: an in situ time-resolved X-ray diffraction and mass spectroscopy study. J Power Sources 277:193–197

    Article  CAS  Google Scholar 

  22. Xia C, Baek B, Xu F, Jung C (2013) Modification of electrolyte transport within the cathode for high-rate cycle performance of Li-ion battery. J Solid State Electrochem 17(8):2151–2156

    Article  CAS  Google Scholar 

  23. Chikkannanavar SB, Bernardi DM, Liu L (2014) A review of blended cathode materials for use in Li-ion batteries. J Power Sources 248:91–100

    Article  CAS  Google Scholar 

  24. Stiaszny B, Ziegler JC, Krauß EE, Zhang M, Schmidt JP, Ivers-Tiffée E (2014) Electrochemical characterization and post-mortem analysis of aged LiMn2O4–NMC/graphite lithium ion batteries part II: calendar aging. J Power Sources 258:61–75

    Article  CAS  Google Scholar 

  25. Stiaszny B, Ziegler JC, Krauß EE, Schmidt JP, Ivers-Tiffée E (2014) Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: cycle aging. J Power Sources 251:439–450

    Article  CAS  Google Scholar 

  26. Zhang XH, Chen ZL, Schwarz B, Li J (2017) Kinetic characteristics up to 4.8V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries. Electrochim Acta 277:152–161

    Article  CAS  Google Scholar 

  27. Wang HQ, Lai FY, Li Y, Zhang XH, Huang YG, Hu SJ, Li QY (2015) Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim Acta 177:290–297

    Article  CAS  Google Scholar 

  28. Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191(2):644–647

    Article  CAS  Google Scholar 

  29. Röder P, Stiaszny B, Ziegler JC, Baba N, Lagaly P, Wiemhöfer H-D (2014) The impact of calendar aging on the thermal stability of a LiMn2O4–Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell. J Power Sources 268:315–325

    Article  CAS  Google Scholar 

  30. Wu SL, Zhang W, Song X, Shukla AK, Liu G, Battaglia V, Srinivasan V (2012) High rate capability of Li(Ni1/3Mn1/3Co1/3)O-2 electrode for Li-ion batteries. J Electrochem Soc 159(4):A438–A444

    Article  CAS  Google Scholar 

  31. Deng BH, Nakamura H, Yoshio M (2005) Comparison and improvement of the high rate performance of different types of LiMn2O4 spinels. J Power Sources 141(1):116–121

    Article  CAS  Google Scholar 

  32. Yoon W-S, Nam K-W, Jang D, Chung KY, Cho Y-H, Choi S, Hanson JC, Yang X-Q (2012) The kinetic effect on structural behavior of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 cathode materials studied by in situ time-resolved X-ray diffraction technique. Electrochem Commun 15(1):74–77

    Article  CAS  Google Scholar 

  33. Sun G, Lai S, Kong X, Chen Z, Li K, Zhou R, Wang J, Zhao J (2018) Synergistic effect between LiNi0.5Co0.2Mn0.3O2 and LiFe0.15Mn0.85PO4/C on rate and thermal performance for lithium ion batteries. ACS Appl Mater Interfaces 10(19):16458–16466

    Article  CAS  PubMed  Google Scholar 

  34. Yamakawa S, Yamasaki H, Koyama T, Asahi R (2013) Numerical study of Li diffusion in polycrystalline LiCoO2. J Power Sources 223:199–205

    Article  CAS  Google Scholar 

  35. Manikandan P, Periasamy P, Jagannathan R (2014) Grain boundary driven capacity fade/hysteresis abated in composite cathode material for lithium-ion batteries/pouch cell. J Power Sources 264:299–310

    Article  CAS  Google Scholar 

  36. Wang S, Wu Y, Li Y, Zheng J, Yang J, Yang Y (2014) Li[Li0.2Mn0.54Ni0.13Co0.13]O2 -LiMn1.5Ti0.5O4 composite cathodes with improved electrochemical performance for lithium ion batteries. Electrochim Acta 133:100–106

    Article  CAS  Google Scholar 

  37. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146(4):1279–1289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge programs supported by Zhejiang Natural Science Foundation (LY16B030007), the program for Ningbo Municipal Science and Technology Innovative Research Team (2016B10005), and Zhejiang Province Key Science and Technology Innovation Team (2013PT16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhui Zhang or Jun Li.

Electronic supplementary material

ESM1

(DOC 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Ren, H., Guo, Y. et al. Synergetic effects of LiNi1/3Co1/3Mn1/3O2–LiMn2O4 blended materials on lithium ionic transport for power performance. Ionics 25, 1595–1605 (2019). https://doi.org/10.1007/s11581-018-2650-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2650-z

Keywords

Navigation