Skip to main content
Log in

A rapid electrochemical sensor fabricated using silver ions and graphene oxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrode surface modification is a common method for designing sensitive electrochemical sensors. However, a long time fabrication process is a key issue for their practical applications. In this work, we proposed a simple in situ electroless dipping deposition process for commercial electrode surface modification. Graphene and Ag NPs have been used as examples and stepwise fabricated on a glassy carbon electrode (GCE) surface. Each fabrication cycle only takes 1 min. Besides the fast fabrication process, the performance of the electrode can be easily adjusted by changing dipping cycle numbers. Based on the proposed procedure, a H2O2 electrochemical sensor was fabricated as an example with excellent performance. We believe the proposed approach could be extended for further nanomaterial-modified electrode design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baghayeri M, Zare EN, Lakouraj MM (2015) Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite. Microchim Acta 182(3–4):771–779. https://doi.org/10.1007/s00604-014-1387-2

    Article  CAS  Google Scholar 

  2. Lin H, Li M, Mihailovič D (2015) Simultaneous determination of copper, lead, and cadmium ions at a Mo 6 S 9-x I x nanowires modified glassy carbon electrode using differential pulse anodic stripping voltammetry. Electrochim Acta 154:184–189. https://doi.org/10.1016/j.electacta.2014.12.087

    Article  CAS  Google Scholar 

  3. Pandikumar A, Yusoff N, Huang NM, Lim HN (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182(5–6):1113–1122

    Google Scholar 

  4. Prabakaran E, Pandian K (2015) Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem 166:198–205. https://doi.org/10.1016/j.foodchem.2014.05.143

    Article  CAS  PubMed  Google Scholar 

  5. Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183(1):257–263. https://doi.org/10.1007/s00604-015-1648-8

    Article  CAS  Google Scholar 

  6. Tristão JC, de Mendonça FG, Lago RM, Ardisson JD (2015) Controlled formation of reactive Fe particles dispersed in a carbon matrix active for the oxidation of aqueous contaminants with H2O2. Environ Sci Pollut Res 22(2):856–863. https://doi.org/10.1007/s11356-014-2554-z

    Article  CAS  Google Scholar 

  7. Goran JM, Phan EN, Favela CA, Stevenson KJ (2015) H2O2 detection at carbon nanotubes and nitrogen-doped carbon nanotubes: oxidation, reduction, or disproportionation? Anal Chem 87:5989–5996

    Article  CAS  PubMed  Google Scholar 

  8. Chang G, Luo Y, Lu W, Qin X, Sun X (2014) Carbon nanoparticles-induced formation of polyaniline nanofibers and their subsequent decoration with Ag nanoparticles for nonenzymatic H2O2 detection. Russ J Electrochem 50(1):95–99. https://doi.org/10.1134/S1023193513020043

    Article  CAS  Google Scholar 

  9. Leonardi SG, Aloisio D, Donato N, Russo PA, Ferro MC, Pinna N, Neri G (2014) Amperometric sensing of H2O2 using Pt–TiO2/reduced graphene oxide nanocomposites. ChemElectroChem 1(3):617–624. https://doi.org/10.1002/celc.201300106

    Article  CAS  Google Scholar 

  10. Wang Q, Li M, Szunerits S, Boukherroub R (2014) Environmentally friendly reduction of graphene oxide using tyrosine for nonenzymatic amperometric H2O2 detection. Electroanalysis 26(1):156–163. https://doi.org/10.1002/elan.201300356

    Article  CAS  Google Scholar 

  11. Liu H, Chen X, Huang L, Wang J, Pan H (2014) Palladium nanoparticles embedded into graphene nanosheets: preparation, characterization, and nonenzymatic electrochemical detection of H2O2. Electroanalysis 26(3):556–564. https://doi.org/10.1002/elan.201300428

    Article  CAS  Google Scholar 

  12. Shang L, Zeng B, Zhao F (2014) Fabrication of novel nitrogen-doped graphene–hollow AuPd nanoparticle hybrid films for the highly efficient electrocatalytic reduction of H2O2. ACS Appl Mater Interfaces 7(1):122–128. https://doi.org/10.1021/am507149y

    Article  CAS  PubMed  Google Scholar 

  13. Guo Q, Li M (2016) Electrodeposition of poly (sodium 4-Styrenesulfonate)-silver nanocomposites for electrochemical detection of H2O2. Int J Electrochem Sci 11(9):7705–7713

    Article  CAS  Google Scholar 

  14. Li S-J, Zhang J-C, Li J, Wang W-T, Liu R-T (2017) One-step electrochemically modulated synthesis of reduced graphene oxide-silver nanocomposites as efficient nonenzymatic H2O2 sensor. Int J Electrochem Sci 12:5692–5703

    Article  CAS  Google Scholar 

  15. Al Nafiey A, Subramanian P, Addad A, Sieber B, Szunerits S, Boukherroub R (2016) Green synthesis of reduced graphene oxide-silver nanoparticles using environmentally friendly L-arginine for H2O2 detection. ECS J Solid State Sci Technol 5(8):M3060–M3066

    Article  CAS  Google Scholar 

  16. Zhao B, Liu Z, Fu W, Yang H (2013) Construction of 3D electrochemically reduced graphene oxide–silver nanocomposite film and application as nonenzymatic hydrogen peroxide sensor. Electrochem Commun 27(Supplement C):1–4. https://doi.org/10.1016/j.elecom.2012.10.040

    Article  CAS  Google Scholar 

  17. Zheng Y, Wang A, Cai W, Wang Z, Peng F, Liu Z, Fu L (2016) Hydrothermal preparation of reduced graphene oxide–silver nanocomposite using Plectranthus amboinicus leaf extract and its electrochemical performance. Enzym Microb Technol 95:112–117. https://doi.org/10.1016/j.enzmictec.2016.05.010

    Article  CAS  Google Scholar 

  18. Lou X, Zhu C, Pan H, Ma J, Zhu S, Zhang D, Jiang X (2016) Cost-effective three-dimensional graphene/ag aerogel composite for high-performance sensing. Electrochim Acta 205(Supplement C):70–76. https://doi.org/10.1016/j.electacta.2016.04.102

    Article  CAS  Google Scholar 

  19. Zheng Y, Wang A, Cai W, Wang Z, Peng F, Liu Z, Fu L (2016) Hydrothermal preparation of reduced graphene oxide–silver nanocomposite using Plectranthus amboinicus leaf extract and its electrochemical performance. Enzym Microb Technol 95(Supplement C):112–117. https://doi.org/10.1016/j.enzmictec.2016.05.010

    Article  CAS  Google Scholar 

  20. Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim Acta 85:295–301. https://doi.org/10.1016/j.electacta.2012.08.099

    Article  CAS  Google Scholar 

  21. Chen L, Yuan C, Dou H, Gao B, Chen S, Zhang X (2009) Synthesis and electrochemical capacitance of core-shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites. Electrochim Acta 54(8):2335–2341. https://doi.org/10.1016/j.electacta.2008.10.071

    Article  CAS  Google Scholar 

  22. Ensafi AA, Abarghoui MM, Rezaei B (2014) Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sensors Actuators B Chem 196:398–405. https://doi.org/10.1016/j.snb.2014.02.028

    Article  CAS  Google Scholar 

  23. Li X, Liu X, Wang W, Li L, Lu X (2014) High loading Pt nanoparticles on functionalization of carbon nanotubes for fabricating nonenzyme hydrogen peroxide sensor. Biosens Bioelectron 59:221–226. https://doi.org/10.1016/j.bios.2014.03.046

    Article  CAS  PubMed  Google Scholar 

  24. Lu X, Xiao X, Li Z, Xu F, Tan H, Sun L, Wang L (2014) A novel nonenzymatic hydrogen peroxide sensor based on three-dimensional porous Ni foam modified with a Pt electrocatalyst. Anal Methods 6(1):235–241. https://doi.org/10.1039/C3AY41566J

    Article  CAS  Google Scholar 

  25. Han Y, Zheng J, Dong S (2013) A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochim Acta 90:35–43. https://doi.org/10.1016/j.electacta.2012.11.117

    Article  CAS  Google Scholar 

  26. Qi C, Zheng J (2016) Novel nonenzymatic hydrogen peroxide sensor based on Ag/Cu2O nanocomposites. Electroanalysis 28(3):477–483. https://doi.org/10.1002/elan.201500296

    Article  CAS  Google Scholar 

  27. He S, Chen Z, Yu Y, Shi L (2014) A novel non-enzymatic hydrogen peroxide sensor based on poly-melamine film modified with platinum nanoparticles. RSC Adv 4(85):45185–45190. https://doi.org/10.1039/C4RA06925K

    Article  CAS  Google Scholar 

  28. Kamyabi MA, Hajari N (2016) Preparation of mesoporous silica templated metal nanostructure on Ni foam substrate and its application for the determination of hydrogen peroxide. J Appl Electrochem 46(9):951–962. https://doi.org/10.1007/s10800-016-0986-5

    Article  CAS  Google Scholar 

  29. Wu W, Li Y, Jin J, Wu H, Wang S, Xia Q (2016) A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni7S6 for hydrogen peroxide and glucose. Sensors Actuators B Chem 232(Supplement C):633–641. https://doi.org/10.1016/j.snb.2016.04.006

    Article  CAS  Google Scholar 

  30. Noorbakhsh A, Salimi A (2009) Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes. Electrochim Acta 54(26):6312–6321. https://doi.org/10.1016/j.electacta.2009.05.078

    Article  CAS  Google Scholar 

  31. Rani KK, Devasenathipathy R, Wang S-F, Yang C (2017) Simple preparation of birnessite-type MnO2 nanoflakes with multi-walled carbon nanotubes for the sensitive detection of hydrogen peroxide. Ionics 23(11):3219–3226. https://doi.org/10.1007/s11581-017-2117-7

    Article  CAS  Google Scholar 

  32. Moozarm Nia P, Lorestani F, Meng WP, Alias Y (2015) A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites. Appl Surf Sci 332(Supplement C):648–656. https://doi.org/10.1016/j.apsusc.2015.01.189

    Article  CAS  Google Scholar 

  33. Golsheikh AM, Huang NM, Lim HN, Zakaria R (2014) One-pot sonochemical synthesis of reduced graphene oxide uniformly decorated with ultrafine silver nanoparticles for non-enzymatic detection of H2O2 and optical detection of mercury ions. RSC Adv 4(69):36401–36411. https://doi.org/10.1039/C4RA05998K

    Article  CAS  Google Scholar 

  34. Noor AAM, Shahid MM, Rameshkumar P, Huang NM (2016) A glassy carbon electrode modified with graphene oxide and silver nanoparticles for amperometric determination of hydrogen peroxide. Microchim Acta 183(2):911–916. https://doi.org/10.1007/s00604-015-1679-1

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by Research Foundation from Hangzhou Dianzi University (KYS205617071) and Zhejiang Province Natural Science Foundation of China (LQ18E010001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Fu or Zhong Liu.

Electronic supplementary material

ESM 1

(DOCX 958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Wang, A., Su, W. et al. A rapid electrochemical sensor fabricated using silver ions and graphene oxide. Ionics 24, 2821–2827 (2018). https://doi.org/10.1007/s11581-017-2413-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2413-2

Keywords

Navigation