Skip to main content
Log in

Influence of quenching on the structural and conduction characteristics of lithium sulfate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium sulfate quenched from the high-temperature melt using conventional quenching as well as rapid quenching techniques has been investigated using X-ray diffraction, scanning electron microscope, differential scanning calorimetry (DSC), vibrational spectroscopy techniques, and electrical conductivity measurements. Crystal structure of the quenched samples studied using X-ray diffraction shows a less ordered β-Li2SO4 phase. This is accompanied by a decrease in phase transition temperature in DSC measurements along with a decrease in the molar enthalpy associated with the transition. Raman and FT-IR spectroscopy studies reveal the disorder in the quenched samples by a significant broadening of the bands associated with the fundamental vibrational modes of SO4 2− ion. Temperature variation of conductivity shows an enhancement in ionic conductivity by one order of magnitude with a slight decrease in phase transition point for quenched samples over unquenched Li2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Knauth P (2009) Inorganic solid li ion conductors: an overview. Solid State Ionics 180(14-16):911–916. https://doi.org/10.1016/j.ssi.2009.03.022

    Article  CAS  Google Scholar 

  2. Masquelier C (2011) Solid electrolytes: lithium ions on the fast track. Nat Mater 10(9):649–650. https://doi.org/10.1038/nmat3105

    Article  CAS  PubMed  Google Scholar 

  3. Nord AG (1976) Crystal structure of β-Li2SO4. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 32(3):982–983. https://doi.org/10.1107/S0567740876004433

    Article  Google Scholar 

  4. Aronsson R, Knape HEG, Lundén A, Nilsson L, Torell LM (1981) Neutron, X-ray and Brillouin scattering studies of rotator phases with fast ion conduction. Solid State Ionics 5:445–448. https://doi.org/10.1016/0167-2738(81)90289-7

    Article  CAS  Google Scholar 

  5. Kvist A, Lundén A (1965) Electrical conductivity of solid and molten lithium sulfate. Z Naturforsch 20(2):235–238. https://doi.org/10.1515/zna-1965-0212

    Article  Google Scholar 

  6. Forland T, Krogh.Moe J (1957) The structure of the high temperature modification of lithium sulfate. Acta Chem Scand 11:565–567. https://doi.org/10.3891/acta.chem.scand.11-0565

    Article  CAS  Google Scholar 

  7. Kaber R, Nilsson L, Hessel NA et al (1992) A single-crystal neutron diffraction study of the structure of the high-temperature rotor phase of lithium sulphate. J Phys Condens Matter 4(8):1925–1933. https://doi.org/10.1088/0953-8984/4/8/008

    Article  CAS  Google Scholar 

  8. Lundén A (1988) Evidence for and against the paddle-wheel mechanism of ion transport in superionic sulphate phases. Solid State Commun 65(10):1237–1240. https://doi.org/10.1016/0038-1098(88)90930-1

    Article  Google Scholar 

  9. Touboul M, Sephar N, Quarton M (1990) Electrical conductivity and phase diagram of the system Li2SO4-Li3PO4. Solid State Ionics 38(3-4):225–229. https://doi.org/10.1016/0167-2738(90)90425-Q

    Article  CAS  Google Scholar 

  10. Kvist A (1967) The electrical conductivity and density of solid and molten Li2SO4- Ag2SO4. Z Naturforsch 22(a):208–212

    CAS  Google Scholar 

  11. Lundén A, Bengtzelius A, Kaber R et al (1983) Phase diagram, electrical conductivity, and cation diffusion of the system lithium sulfate-zinc sulfate. Solid State Ionics 9:89–94

    Article  Google Scholar 

  12. Zhu B, Xia C-R, Albinsson I, Mellander B-E (1998) Structural and electrical properties of γ-alumina-lithium sulphate films. Ionics (Kiel) 4(5-6):330–335. https://doi.org/10.1007/BF02375874

    Article  CAS  Google Scholar 

  13. Dissanayake MAKL, Mellander B-E (1986) Phase diagram and electrical conductivity of the Li2SO4-Li2CO3 system. Solid State Ionics 21(4):279–285. https://doi.org/10.1016/0167-2738(86)90190-6

    Article  CAS  Google Scholar 

  14. Tilak AVN, Umar M, Shahi K (1987) Fast ion transport in Li2SO4-LiCl mixed crystal and multiphase system. Solid State Ionics 24(2):121–127. https://doi.org/10.1016/0167-2738(87)90020-8

    Article  CAS  Google Scholar 

  15. Dabas P, Hariharan K (2013) Rapid quenching setup: design, development and applications in solid state ionics. Trans Indian Inst Metals 66(4):343–348. https://doi.org/10.1007/s12666-013-0275-5

    Article  CAS  Google Scholar 

  16. Alcock NW, Evans DA, Jenkins HDB (1973) Lithium sulphate – a redetermination. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 29(2):360–361. https://doi.org/10.1107/S0567740873002499

    Article  CAS  Google Scholar 

  17. Muniz FTL, Miranda MAR, Morilla dos Santos C, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr Sect A Found Adv 72(3):385–390. https://doi.org/10.1107/S205327331600365X

    Article  CAS  Google Scholar 

  18. Suleiman BM, Gustavsson M, Karawacki E, Lundén A (1997) Thermal properties of lithium sulphate. J Phys D Appl Phys 30(18):2553–2560. https://doi.org/10.1088/0022-3727/30/18/009

    Article  CAS  Google Scholar 

  19. Clark RP (1975) Thermal data for lithium sulfate and binary eutectics lithium sulfate-lithium chloride, lithium sulfate-sodium chloride, and lithium sulfate-potassium chloride. J Chem Eng Data 20(1):17–19. https://doi.org/10.1021/je60064a027

    Article  CAS  Google Scholar 

  20. Shahi K, Wagner JB Jr (1981) Phase transition and the ag+-ion diffusion in AgI: effect of homovalent Br-ion substitution. Phys Rev B 23(12):6417–6421. https://doi.org/10.1103/PhysRevB.23.6417

    Article  CAS  Google Scholar 

  21. Frech R, Cazzanelli E (1983) Raman spectroscopic studies of Li2SO4. Solid State Ionics 9:95–100

    Article  Google Scholar 

  22. Patro LN, Hariharan K (2013) Influence of dispersed alumina particles on the transport characteristics of mechanochemically synthesized NaSn2F5. Ionics (Kiel) 19(4):643–649. https://doi.org/10.1007/s11581-012-0784-y

    Article  CAS  Google Scholar 

  23. Gundusharma UM, MacLean C, Secco EA (1986) Rotating sulfate ion contribution to electrical conductivity in Li2SO4 and LiNaSO4. Solid State Commun 57(7):479–481. https://doi.org/10.1016/0038-1098(86)90612-5

    Article  CAS  Google Scholar 

  24. Lundén A (1988) Enhancement of cation mobility in some sulphate phases due to a paddle-wheel mechanism. Solid State Ionics 28–30:163–167. https://doi.org/10.1016/S0167-2738(88)80026-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Prof. A. Subrahmanyam, Department of Physics, Indian Institute of Technology Madras for important discussions and for facilitating the conduction of experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sony Varghese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, S., Hariharan, K. Influence of quenching on the structural and conduction characteristics of lithium sulfate. Ionics 24, 2591–2599 (2018). https://doi.org/10.1007/s11581-017-2395-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2395-0

Keywords

Navigation