Skip to main content
Log in

Nitrogen-doped hollow carbon spheres for electrochemical detection of heavy metal ions

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nitrogen-doped hollow carbon spheres (N-HCSs) were successfully fabricated using silica sphere as template and resorcinol-formaldehyde resin as carbon precursor. Scanning electron microscopy and transmission electron microscopy demonstrated that diameters and shell thickness of N-HCSs were 325 and 25 nm, respectively. The N-HCS modified gold electrode was used for the square wave anodic stripping voltammetry for the individual determination of trace heavy metal ions (HMIs) such as Pb2+, Cu2+, and Hg2+ in drinking water. Electrochemical properties of modified electrode were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Moreover, the supporting electrolytes, pH, deposition potential, and deposition time were carefully studied. The N-HCS modified electrode exhibited the detection limit of 15, 17, and 2.35 nM for Pb2+, Cu2+, and Hg2+, respectively, which are significantly lower than the guideline values for drinking water quality provided by the World Health Organization. The electrochemical measurement results showed that the N-HCS structures exhibited wonderful adsorption and capacitive properties toward HMIs and were found to be useful for the simultaneous and selective electrochemical detection. Most importantly, herein we discussed the two types of test for simultaneous detection of Pb2+ and Hg2+, under the optimum experimental conditions. The sensitivity of Hg2+ increased in the presence of concentration range of Pb2+. Thus, this study provides a reliable method for online detection of low concentration Hg2+ and robust alternatives for heavy metal sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vedhi C, Selvanathan G, Arumugam P, Manisankar P (2008) Electrochemical sensors of heavy metals using novel polymer-modified glassy carbon electrodes. Ionics 15:377

    Article  CAS  Google Scholar 

  2. Wang N, Sun JC, Fan H, Ai SY (2016) Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions. Talanta 148:301–307. https://doi.org/10.1016/j.talanta.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  3. Ma HC, An R, Chen LL, YH F, Ma C, Dong XL, Zhang XF (2015) A study of the photodeposition over Ti/TiO2 electrode for electrochemical detection of heavy metal ions. Electrochem Commun 57:18–21. https://doi.org/10.1016/j.elecom.2015.04.015

    Article  CAS  Google Scholar 

  4. Ji WB, Yap SHK, Panwar N, Zhang LL, Lin B, Yong KT, Tjin SC (2016) Detection of low-concentration heavy metal ions using optical microfiber sensor. Sensors Actuat B Chem 237:142–149. https://doi.org/10.1016/j.snb.2016.06.053

    Article  CAS  Google Scholar 

  5. Wang N, Lin M, Dai H, Ma H (2016) Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens Bioelectron 79:320–326. https://doi.org/10.1016/j.bios.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  6. Afkhami A, Madrakian T, Sabounchei SJ, Rezaei M, Samiee S, Pourshahbaz M (2012) Construction of a modified carbon paste electrode for the highly selective simultaneous electrochemical determination of trace amounts of mercury(II) and cadmium(II). Sensors Actuat B Chem 161(1):542–548. https://doi.org/10.1016/j.snb.2011.10.073

    Article  CAS  Google Scholar 

  7. Dedelaite L, Kizilkaya S, Incebay H, Ramanavicius A (2015) Electrochemical determination of Cu(II) ions using glassy carbon electrode modified by some nanomaterials and 3-nitroaniline. Colloid Surface A 483:279–284. https://doi.org/10.1016/j.colsurfa.2015.05.054

    Article  CAS  Google Scholar 

  8. Xiao C, Chu XC, Yang Y, Li X, Zhang XH, Chen JH (2011) Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Biosens Bioelectron 26(6):2934–2939. https://doi.org/10.1016/j.bios.2010.11.041

    Article  CAS  PubMed  Google Scholar 

  9. Zhou L, Xiong W, Liu ST (2015) Size-controlled growth of gold nanoparticle-doped carbon foams as sensitive electrochemical sensors for the determination of Pb(II). Ionics 22:935

    Article  CAS  Google Scholar 

  10. Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metal using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuat B Chem 186:451–460. https://doi.org/10.1016/j.snb.2013.06.051

    Article  CAS  Google Scholar 

  11. Zhu L, LL X, Huang BZ, Jia NM, Tan L, Yao SZ (2014) Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochim Acta 115:471–477. https://doi.org/10.1016/j.electacta.2013.10.209

    Article  CAS  Google Scholar 

  12. Zhang YX, Zhang JM, Liu Y, Huang H, Kang ZH (2012) Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions. Mater Res Bull 47(4):1034–1039. https://doi.org/10.1016/j.materresbull.2011.12.051

    Article  CAS  Google Scholar 

  13. Li XY, Zhou HH, Fu CP, Wang F, Ding YJ, Kuang YF (2016) A novel design of engineered multi-walled carbon nanotubes material and its improved performance in simultaneous detection of Cd(II) and Pb(II) by square wave anodic stripping voltammetry. Sensors Actuat B Chem 236:144–152. https://doi.org/10.1016/j.snb.2016.05.149

    Article  CAS  Google Scholar 

  14. Enterría M, Figueiredo JL (2016) Nanostructured mesoporous carbons: tuning texture and surface chemistry. Carbon 108:79–102. https://doi.org/10.1016/j.carbon.2016.06.108

    Article  CAS  Google Scholar 

  15. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58. https://doi.org/10.1016/j.jpowsour.2012.12.054

    Article  CAS  Google Scholar 

  16. Dai YH, Jiang H, YJ H, Fu Y, Li CZ (2014) Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications. Ind Eng Chem Res 53(8):3125–3130. https://doi.org/10.1021/ie403950t

    Article  CAS  Google Scholar 

  17. White RJ, Tauer K, Antonietti M, Titirici MM (2010) Functional hollow carbon nanospheres by latex templating. J Am Chem Soc 132:17360

    Article  CAS  PubMed  Google Scholar 

  18. Nongwe I, Ravat V, Meijboom R, Coville NJ (2013) Efficient and reusable Co/nitrogen doped hollow carbon sphere catalysts for the aerobic oxidation of styrene. Appl Catal A Gen 466:1–8. https://doi.org/10.1016/j.apcata.2013.06.014

    Article  CAS  Google Scholar 

  19. Yi YH, Zhu GB, Sun H, Sun JF, Wu XY (2016) Nitrogen-doped hollow carbon spheres wrapped with graphene nanostructure for highly sensitive electrochemical sensing of parachlorophenol. Biosens Bioelectron 86:62–67. https://doi.org/10.1016/j.bios.2016.06.034

    Article  CAS  PubMed  Google Scholar 

  20. Zhang WM, JS H, Guo YG, Zheng SF, Zhong LS (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20(6):1160–1165. https://doi.org/10.1002/adma.200701364

    Article  CAS  Google Scholar 

  21. Sun H, Zhu YQ, Yang B, Wang YF, Wu YP, Du JZ (2016) Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J Mater Chem A 4(31):12088–12097. https://doi.org/10.1039/C6TA04330E

    Article  CAS  Google Scholar 

  22. Chen L, Ji T, LW M, Zhu JH (2017) Carbon cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848. https://doi.org/10.1016/j.carbon.2016.10.054

    Article  CAS  Google Scholar 

  23. Zhan YF, Yu X, Cao LM, Zhang BD, Wu XX, Xie WG, Mai WJ, Meng H (2016) The influence of nitrogen source and doping sequence on the electrocatalytic activity for oxygen reduction reaction of nitrogen doped carbon materials. Int J Hydrogen Energ 411:3493

    Google Scholar 

  24. Sun F, Gao JH, Pi XX, Wang LJ, Yang YQ, ZB Q, Wu SH (2017) High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J Power Sources 337:189–196. https://doi.org/10.1016/j.jpowsour.2016.10.086

    Article  CAS  Google Scholar 

  25. Sun F, Gao JH, Liu X, Yang YQ, SH W (2016) Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption. Chem Eng J 290:116–124. https://doi.org/10.1016/j.cej.2015.12.044

    Article  CAS  Google Scholar 

  26. Chen AB, Li YQ, Liu L, YF Y, Xia KC, Wang YY (2017) Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors. Appl Surf Sci 393:151–158. https://doi.org/10.1016/j.apsusc.2016.10.025

    Article  CAS  Google Scholar 

  27. Zhou TS, Zhou Y, Ma RG, Zhou ZZ, Liu GH, Liu Q, Zhu YF, Wang JC (2016) In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts. Nano 8:18134

    CAS  Google Scholar 

  28. Huang JS, Zhang XP, Zhou LM, You TY (2016) Simultaneous electrochemical determination of dihydroxybenzene isomers using electrospun nitrogen-doped carbon nanofiber film electrode. Sensors Actuat B Chem 224:568–576. https://doi.org/10.1016/j.snb.2015.10.102

    Article  CAS  Google Scholar 

  29. Chen AB, YF Y, Lv HJ, Wang YY, Shen SF, YQ H, Li B, Zhang Y, Zhang J (2013) Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. J Mater Chem A 1(4):1045–1047. https://doi.org/10.1039/C2TA01013E

    Article  Google Scholar 

  30. Zhang ZH, Zhang R, Li CC, Yuan L, Li PP, Yao L, Liu SQ (2012) Nitrogen-doped carbon hollow spheres for immobilization, direct electrochemistry, and biosensing of protein. Electroanalysis 24(6):1424–1430. https://doi.org/10.1002/elan.201200002

    Article  CAS  Google Scholar 

  31. Zeng MF, Wang YD, Liu Q, Yuan X, Feng RK, Yang Z, Qi CZ (2016) N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads. Int J Biol Macromol 89:449–455. https://doi.org/10.1016/j.ijbiomac.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  32. Wen YF, Wang B, Luo B, Wang LZ (2016) Long-term cycling performance of nitrogen-doped hollow carbon nanospheres as anode materials for sodium-ion batteries. Eur J Inorg Chem 2016(13-14):2051–2055. https://doi.org/10.1002/ejic.201501172

    Article  CAS  Google Scholar 

  33. Xiong W, Zhou L, Liu S (2016) A new electrochemical sensor based on carboimidazole grafted reduce graphene oxide for simultaneous detection of Hg2+and Pb2+. Chem Eng J 284:650–656. https://doi.org/10.1016/j.cej.2015.09.013

    Article  CAS  Google Scholar 

  34. Sun GL, Ma LY, Ran JB, Li B, Shen XY, Tong H (2016) Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors. Electrochim Acta 194:168–178. https://doi.org/10.1016/j.electacta.2016.02.066

    Article  CAS  Google Scholar 

  35. Soares OSGP, Rocha RP, Gonçalves AG, Figueiredo JL, Órfão JJM, Pereira MFR (2016) Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Appl Catal B Enviro 192:296–303. https://doi.org/10.1016/j.apcatb.2016.03.069

    Article  CAS  Google Scholar 

  36. Galeano C, Meier JC, Soorholtz M, Bongard H, Baldizzone C, Mayrhofer KJJ (2014) Nitrogen-doped hollow carbon spheres as a support for platinum-based electrocatalysts. ACS Catal 4(11):3856–3868. https://doi.org/10.1021/cs5003492

    Article  CAS  Google Scholar 

  37. Muralikrishna S, Sureshkumar K, Varley TS, Nagaraju DH, Ramakrishnappa T (2014) In situ reduction and functionalization of graphene oxide with L-cysteine for simultaneous electrochemical determination of cadmium(II), lead(II), copper(II), and mercury(II) ions. Anal Methods 6(21):8698–8705. https://doi.org/10.1039/C4AY01945H

    Article  CAS  Google Scholar 

  38. Ping JF, Wu J, Ying YB, Wang MH, Liu G, Zhang M (2011) Evaluation of trace heavy metal levels in soil samples using an ionic liquid modified carbon paste electrode. J Agr Food Chem 59(9):4418–4423. https://doi.org/10.1021/jf200288e

    Article  CAS  Google Scholar 

  39. Afkhami A, Bagheri H, Khoshsafar H, Saber-Tehrani M, Tabatabaee M, Shirzadmehr A (2012) Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Anal Chim Acta 746:98–106. https://doi.org/10.1016/j.aca.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  40. Xing HK, Xu JK, Zhu XF, Duan XM, Lu LM, Wang WM, Zhang YS, Yang TT (2016) Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J Electroanal Chem 760:52–58. https://doi.org/10.1016/j.jelechem.2015.11.043

    Article  CAS  Google Scholar 

  41. Guan Q, Xiong W, Zhou L, Liu ST (2016) Facile synthesis of nitrogen-doped porous carbon-gold hybrid nanocomposite for mercury(II) ion electrochemical determination. Electroanalysis 28(1):133–139. https://doi.org/10.1002/elan.201500481

    Article  CAS  Google Scholar 

  42. Xing HK, Xu JK, Zhu XF, Duan XM, Lu LM, Zuo YX, Zhang YS, Wang WM (2016) A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg2+and Pb2+. J Electroanal Chem 782:250–255. https://doi.org/10.1016/j.jelechem.2016.10.043

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the funding support of Science and Technology program of Wuhan Science and Technology Bureau (2015060202010121), the National Natural Science Foundation of China (No.21471120), International Cooperation Foundation of Hubei Province (2012IHA00201), Educational Commission of Hubei Province of China (T201306), and Scientific Research Foundation of Wuhan Institute of Technology (K201515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Guan, Q. & Liu, S. Nitrogen-doped hollow carbon spheres for electrochemical detection of heavy metal ions. Ionics 24, 2783–2793 (2018). https://doi.org/10.1007/s11581-017-2390-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2390-5

Keywords

Navigation