Skip to main content
Log in

Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Nafion-117 membranes in the Li+ form with pore-intercalated aprotonic organic solvents were prepared. The prepared materials were characterized by IR, impedance, and 7Li NMR spectroscopy. The solvent uptake of the membranes is shown to be controlled by the composition of organic solvents and their mixtures as well as by the conditions of the preliminary treatment of the initial membranes. For the Nafion-117 membrane, the degree of solvation can be improved by the preliminary treatment with alcohols, especially by the thermal treatment in methanol. Conductivity of the membranes is shown to increase with increasing content of the sorbed solvents. The best conductivity at 25 °C (2.5 × 10−3 and 1.6 × 10−3 S cm−1) was attained for the electrolytes based on the Nafion-117 membrane in lithium form with sorbed ethylene carbonate-propylene carbonate and ethylene carbonate-dimethoxyethane mixtures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruno S, Jürgen G (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048

    Article  CAS  Google Scholar 

  2. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164. https://doi.org/10.1016/j.ensm.2016.07.003

    Article  Google Scholar 

  3. Xu K (2004) Nonaqueous liquid electrolyte for lithium-based rechargeable batteries. Chem Rev 104:4303–4417. https://doi.org/10.1021/cr030203g

    Article  CAS  PubMed  Google Scholar 

  4. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  5. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540. https://doi.org/10.1039/c0cs00081g

    Article  CAS  PubMed  Google Scholar 

  6. Yong T, Zhang L, Wang J, Mai Y, Yan X, Zhao X (2016) Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries. J Power Sources 328:397–404. https://doi.org/10.1016/j.jpowsour.2016.08.044

    Article  CAS  Google Scholar 

  7. Pan XN, Hou J, Liu L, Yang PX, Zhang JQ, An MZ, Li N (2017) A piperidinium-based ester-functionalized ionic liquid as electrolytes in Li/LiFePO4 batteries. Ionics. https://doi.org/10.1007/s11581-017-2104-z

  8. Ahmad S (2009) Polymer electrolytes: characteristics and peculiarities. Ionics 15(3):309–321. https://doi.org/10.1007/s11581-008-0309-x

    Article  CAS  Google Scholar 

  9. Austin S, Johnsi M (2016) Nanocomposite polymer electrolytes. Ionics. https://doi.org/10.1007/s11581-016-1924-6

  10. Armand M (1983) Polymer electrolytes—an overview. Solid State Ionics 9 & 10:10. https://doi.org/10.1016/0167-2738(83)90083-8

    Article  Google Scholar 

  11. Lightfoot P, Mehta MA, Bruce PG (1993) Crystal structure of the polymer electrolyte poly(ethy1ene oxide)3: LiCF3SO3. Science 262(5135):3. https://doi.org/10.1126/science.262.5135.883

    Article  Google Scholar 

  12. Naveen KK, Kang M, Sivaiah K, Ravi M, Ratnakaram YC (2016) Enhanced electrical properties of polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP):Li+blended polymer electrolyte films with addition of Ag nanofiller. Ionics 22(6):815–825. https://doi.org/10.1007/s11581-015-1599-4

    Article  CAS  Google Scholar 

  13. Sun B, Mindemark J, Edström K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262:738–742. https://doi.org/10.1016/j.ssi.2013.08.014

    Article  CAS  Google Scholar 

  14. Fonseca CP, Neves S (2002) Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide). J Power Sources 104:5. https://doi.org/10.1016/S0378-7753(01)00902-8

    Article  Google Scholar 

  15. Sanginov EA, Evshchik EY, Kayumov RR, Dobrovol’skii YA (2015) Lithium-ion conductivity of the Nafion membrane swollen in organic solvents. Russ J Electrochem 51(10):986–990. https://doi.org/10.1134/s1023193515100122

    Article  CAS  Google Scholar 

  16. Aldebert P, Guglieimi M, Pineri M (1991) Ionic conductivity of bulk, gels and solutions of perfluorinated ionomer membranes. Polymer J 23(5):8. https://doi.org/10.1295/polymj.23.399

    Article  Google Scholar 

  17. Berezina NP, Timofeev SV, Kononenko NA (2002) Effect of conditioning techniques of perfluorinated sulphocationic membranes on their hydrophylic and electrotransport properties. J Memb Sci 209:10. https://doi.org/10.1016/S0376-7388(02)00368-X

    Article  Google Scholar 

  18. Volkov V, Volkov E, Timofeev S, Sanginov E, Pavlov A, Safronova E, Stenina I, Yaroslavtsev A (2010) Diffusion mobility of alkali metals in perfluorinated sulfocationic and carboxylic membranes as probed by 1H, 7Li, 23Na, and 133Cs NMR spectroscopy. Russ J Inorg Chem 55(3):318–324. https://doi.org/10.1134/s0036023610030022

    Article  CAS  Google Scholar 

  19. Sanginov EA, Kayumov RR, Shmygleva LV, Lesnichaya VA, Karelin AI, Dobrovolsky YA (2017) Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion. Solid State Ionics 300:26–31. https://doi.org/10.1016/j.ssi.2016.11.017

    Article  CAS  Google Scholar 

  20. Cai Z, Liu Y, Liu S, Li L, Zhang Y (2012) High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ Sci 5(2):5690–5693. https://doi.org/10.1039/c1ee02708e

    Article  CAS  Google Scholar 

  21. Karelin AI, Kayumov RR, Sanginov EA, Dobrovolsky YA (2017) Structure of lithium ion-conducting polymer membranes based on Nafion plasticized with dimethylsulfoxide. Petrol Chem 56(11):1020–1026. https://doi.org/10.1134/s0965544116110074

    Article  Google Scholar 

  22. Phair JW, Badwal SPS (2006) Review of proton conductors for hydrogen separation. Ionics 12:103–115. https://doi.org/10.1007/s11581-006-0016-4

    Article  CAS  Google Scholar 

  23. Karpenko-Jereb LV, Kelterer A-M, Berezina NP, Pimenov AV (2013) Conductometric and computational study of cationic polymer membranes in H+ and Na+-forms at various hydration levels. J Memb Sci 444:127–138. https://doi.org/10.1016/j.memsci.2013.05.012

    Article  CAS  Google Scholar 

  24. Safronova E, Golubenko D, Pourcelly G, Yaroslavtsev A (2015) Mechanical properties and influence of straining on ion conductivity of perfluorosulfonic acid Nafion®-type membranes depending on water uptake. J Memb Sci 473:218–225. https://doi.org/10.1016/j.memsci.2014.09.031

    Article  CAS  Google Scholar 

  25. Yaroslavtsev AB, Karavanova YA, Safronova EY (2011) Ionic conductivity of hybrid membranes. Petrol Chem 51(7):473–479. https://doi.org/10.1134/s0965544111070140

    Article  CAS  Google Scholar 

  26. Doyle M, Lewittes ME, Roelofs MG, Perusich SA, Lowrey RE (2001) Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties. J Memb Sci 184:257–273. https://doi.org/10.1016/S0376-7388(00)00642-6

    Article  CAS  Google Scholar 

  27. Safronova E, Safronov D, Lysova A, Parshina A, Bobreshova O, Pourcelly G, Yaroslavtsev A (2017) Sensitivity of potentiometric sensors based on Nafion ®-type membranes and effect of the membranes mechanical, thermal, and hydrothermal treatments on the on their properties. Sensors Actuat B Chem 240:1016–1023. https://doi.org/10.1016/j.snb.2016.09.010

    Article  CAS  Google Scholar 

  28. Liu Y, Cai Z, Tan L, Li L (2012) Ion exchange membranes as electrolyte for high performance Li-ion batteries. Energy Environ Sci 5(10):9007. https://doi.org/10.1039/c2ee22753c

    Article  CAS  Google Scholar 

  29. Yaws L (2014) Thermophysical properties of chemicals and hydrocarbons. 2nd edit. Chapter 19. Elsevier, Amsterdam. https://doi.org/10.1016/B978-081551596-8.50024-9

    Book  Google Scholar 

  30. Casciola M, Alberti G, Sganappa M, Narducci N (2006) Factors affecting the stability of Nafion conductivity at high temperature and relative humidity. Desalination 200:639–641. https://doi.org/10.1016/j.desal.2006.03.450

    Article  CAS  Google Scholar 

  31. Alberti G, Narducci R, Sganappa M (2008) Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. J Power Sources 178:575–583. https://doi.org/10.1016/j.jpowsour.2007.09.034.22–27

    Article  CAS  Google Scholar 

  32. Collette F, Thominette F, Mendil-Jakani H, Gebel G (2013) Structure and transport properties of solution-cast Nafion membranes subjected to hygrothermal aging. J Membr Sci 435:242–252. https://doi.org/10.1016/j.memsci.2013.02.002

    Article  CAS  Google Scholar 

  33. Kuwertz R, Kirstein C, Turek T, Kunz U (2016) Influence of acid pretreatment on ionic conductivity of Nafion membranes. J Membr Sci 500:225–235. https://doi.org/10.1016/j.memsci.2015.11.022

    Article  CAS  Google Scholar 

  34. DeBonis D, Mayer M, Omosebi A, Besser RS (2016) Analysis of mechanism of Nafion conductivity change due to hot pressing treatment. Renew Energy 89:200–206. https://doi.org/10.1016/j.renene.2015.11.081

    Article  CAS  Google Scholar 

  35. Wang M, Zhao F, Dong S (2004) A single ionic conductor based on Nafion and its electrochemical properties used as lithium polymer electrolyte. J Phys Chem B 108:1365–1370. https://doi.org/10.1021/jp036661a

    Article  CAS  Google Scholar 

  36. Socrates G (2001) Infrared and raman characteristic group frequencies. Tables and charts, 3rd edn. Wiley, Baffins Lane

    Google Scholar 

  37. Chia C-H, Wu Z, C-H W, Cheng R-H, Ding S (2012) Resolve the pore structure and dynamics of Nafion 117: application of high resolution 7Li solid state nuclear magnetic resonance spectroscopy. J Mater Chem 22(42):22440. https://doi.org/10.1039/c2jm34057g

    Article  CAS  Google Scholar 

  38. Volkov VI, Marinin AA (2013) NMR methods for studying ion and molecular transport in polymer electrolytes. Russ Chem Rev 82(3):248–272. https://doi.org/10.1070/RC2013v082n03ABEH004278

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-79-30054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropaeva, D.Y., Novikova, S.A., Kulova, T.L. et al. Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents. Ionics 24, 1685–1692 (2018). https://doi.org/10.1007/s11581-017-2333-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2333-1

Keywords

Navigation