Skip to main content
Log in

AC and DC conductivity study of LiH2PO4 compound using impedance spectroscopy

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The lithium dihydrogen phosphate LiH2PO4 has been investigated by X-ray powder diffraction, scanning electron microscopy (SEM), and electrical impedance spectroscopy. The Rietveld refinements based on the XRD patterns show that the compound is crystallized in the orthorhombic system with Pna21 space group, and the refined unit cell parameters are a = 6.2428 Å, b = 7.6445 Å, and c = 6.873 Å. The electrical properties were studied using complex impedance spectroscopy as a function of frequency (104–107 Hz) at various temperatures (300–400 K). The Nyquist plots are well fitted to an equivalent circuit consisting of a series of combination of grains and inhomogeneous electrode surface effect. The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law. Moreover, the near value of the activation energies obtained from the equivalent circuit and analysis of M″ confirms that the transport is through ion hopping mechanism dominated by the motion of the proton in the structure of the investigated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kumaresan P, Moorthy Babu S, Anbarasan PM (2008) Effect of irradiation of swift heavy ions on dyes-doped KDP crystals for laser applications. J Cryst Growth 310:1999–2004

    Article  CAS  Google Scholar 

  2. Havlin S (1987) Longitudinal and transverse dielectric constants of KDP-type ferro- and antiferroelectrics. Ferroelectrics 71–72:183–223

  3. Haile SH, Boysen DA, Chisholm CRI, Merle RB (2001) Solid acids as fuel cell electrolytes. Nature 410:910

    Article  CAS  Google Scholar 

  4. Uda T, Boysen DA, Haile SM (2005) Thermodynamic, thermomechanical, and electrochemical evaluation of CsHSO4. Solid State Ionics 176:127

    Article  CAS  Google Scholar 

  5. Lee H-S (1996) Hidden nature of the high-temperature phase transitions in crystals of KH2PO4-TYPE : Is it a physical change? J Phys Chem Solids 57:333

    Article  CAS  Google Scholar 

  6. Castillo J, Materon EM, Castillo R, Vargas RA, Bueno PR, Varela JA (2009) Electrical relaxation in proton conductor composites based on (NH4)H2PO4/TiO2. Ionics 15:329

    Article  CAS  Google Scholar 

  7. Cotton FA, Frenz BA, Hunter DL (1975) The structure of potassium hydrogen sulfate. Acta Crystallogr B 31:302

    Article  Google Scholar 

  8. Pepinsky R, Vedam K, Okaya Y, Hoshino S (1958) Ammonium Hydrogen Sulfate: A New Ferroelectric with Low Coercive Field. Phys Rev 111:1508

    Article  CAS  Google Scholar 

  9. Pepinsky R, Vedam K (1960) Ferroelectric Transition in Rubidium Bisulfate. Phys Rev 117:1502

    Article  CAS  Google Scholar 

  10. Boysen DA, Uda T, Chisholm CRI, Haile SM (2004) High-Performance Solid Acid Fuel Cells Through Humidity Stabilization. Science 303:68–70

    Article  CAS  Google Scholar 

  11. Uda T, Haile SM (2005) High-Performance Solid Acid Fuel Cells Through Humidity Stabilization. Electrochem Solid State Lett 8:A245–A246

    Article  CAS  Google Scholar 

  12. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  13. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69. For more details on the FULLPROF Suite of programs consult the site: https://www.ill.eu/sites/fullprof/. Available online 30 July 2002

  14. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

  15. Catti M, Ivaldi G (1977) Crystal structure of LiH2PO structural topology and hydrogen bonding in the alkaline dihydrogen orthophosphates. Z Kristallogr 146:215

    Google Scholar 

  16. Collins T (2011) Optical and Digital Image Processing. 859–877. For more details on the image J suite of programs consult the site: https://imagej.nih.gov/ij/download.html. Available online: 29 Apr 2011

  17. Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem 74:125

    Article  CAS  Google Scholar 

  18. Jonscher AK (1975) The Interpretation of Non-Ideal Dielectric Admittance and Impedance Diagrams. Phys State Sol (A) 32:665–667

    Article  CAS  Google Scholar 

  19. Selvasekarapandian S, Vijaykumar M (2003) The ac impedance spectroscopy studies on LiDyO2. Mater Chem Phys 80:29–33

    Article  CAS  Google Scholar 

  20. Plocharski J (1988) PEO based composite solid electrolyte containing nasicon. Solid State Ionics 28:979–982

    Article  Google Scholar 

  21. Ram M (2010) Synthesis and electrical properties of (LiCo3/5Fe1/5Mn1/5)VO4 ceramics. Solid State Sci 12:350–354

    Article  CAS  Google Scholar 

  22. Chandra KP, Prasad K, Gupta RN (2007) Impedance spectroscopy study of an organic semiconductor: Alizarin. Phys B Condens Matter 388:118–123

    Article  CAS  Google Scholar 

  23. Joncher AK (1983) Dielectric relaxation in solids. Chesla Dielectric Press, London, p 56

    Google Scholar 

  24. Elliot SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors Adv Phys 36:135

  25. Arthur TH, GS M (1979) Studies of layered uranium(VI) compounds. I. High proton conductivity in polycrystalline hydrogen uranyl phosphate tetrahydrate. J Sol Stat Chem 28:345–361

    Article  Google Scholar 

  26. Schechter A, Savinell RF (2002) Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 147:181–187

    Article  CAS  Google Scholar 

  27. Diosa JE, Vargas RA, Albinsson I, Mellander B-E (2004) Dielectric relaxation in single crystal NH4H2PO4 in the high-temperature regime. Solid State Commun 132:55–58

    Article  CAS  Google Scholar 

  28. Diosa JE, Vargas RA, Albinsson I, Mellander BE (2004) Dielectric relaxation of KH2PO4 above room temperature. Phys Status Solid B 241:1369–1375

    Article  CAS  Google Scholar 

  29. Rhimi T, Toumi M, Khirouni K, Guermazi S (2017) AC conductivity, electric modulus analysis of KLi(H2PO4)2 compound. J Alloys Compd 714:546–552

    Article  CAS  Google Scholar 

  30. Schutt HJ (1994) A new phenomenological description of the electrical relaxation in ionic conductors. Solid State Ionics 72:86–88

    Article  Google Scholar 

  31. Hodge IM, Angell CA (1977) Electrical relaxation in amorphous protonic conductors.J Chem Phys 67:1647–1658

    Article  CAS  Google Scholar 

  32. Sarode AV, Kumbharkhane AC (2011) Dielectric relaxation study of poly(ethylene glycols) using TDR technique. Mol Liq K 164:226–232

    Article  CAS  Google Scholar 

  33. Psarras GC, Manolakaki E, Tsangaris GM (2003) Dielectric dispersion and ac conductivity in—Iron particles loaded—polymer composites. Compos Part A 34:1187–1198

    Article  Google Scholar 

  34. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78:639–648

    Article  CAS  Google Scholar 

  35. Mandal SK, Dey P, Nath TK (2014) Electrical relaxation in a glass-forming molten salt. Mater Sci Eng B 181:70–76

    Article  CAS  Google Scholar 

  36. Elliott SR (1988) Frequency-dependent conductivity in ionic glasses: A possible model. Solid State Ionics 27:131–149

    Article  Google Scholar 

  37. Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rhimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhimi, T., Leroy, G., Duponchel, B. et al. AC and DC conductivity study of LiH2PO4 compound using impedance spectroscopy. Ionics 24, 1305–1312 (2018). https://doi.org/10.1007/s11581-017-2306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2306-4

Keywords

Navigation