Skip to main content
Log in

Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The various mole percent (1–5%) of Eu3+-doped ZnSe thin films were fabricated on the indium-doped tin oxide (ITO) conducting glass substrate by single-step electrochemical deposition (ECD) process in an aqueous medium at 50 °C. The structural, optical, magnetic, and electrochemical properties were characterized as a function of the Eu3+ ion concentration. The X-ray diffraction (XRD) analyses evidenced that the films were hexagonal wurtzite structure along with the (101) preferential orientation. High-resolution scanning electron microscopy (HRSEM) results revealed that the thin films show a spherical like structure for 1–3% of Eu3+-doped ZnSe films. Further, increasing of Eu3+ concentration (4 and 5%), the surface morphology of thin films was observed as agglomerated grain-like structure. The band gap energy of Eu3+-doped ZnSe thin films (2.35 to 2.49 eV) determined by UV-Vis spectra showed a blue shift of absorption edge compared to the pure ZnSe thin film (2.33 eV). The increased band gap by doping of Eu3+ is due to the quantum size effect. The PL emission intensity enhanced by increasing Eu3+ concentration which revealed the enhanced radiative recombination in the luminescence process. The magnetic study revealed that Eu3+-doped ZnSe thin films were ferromagnetic in nature. Electrochemical impedance analysis indicated that 4% of Eu3+-doped ZnSe thin films showed a lower charge transfer resistance (352 Ω) and excellent properties compared to the other samples. Further, the photoelectrochemical measurements carried out for the optimized 4% Eu3+-doped ZnSe thin film revealed the faster migration of photoinduced charge carriers. The present investigation demonstrates that the electrochemically deposited Eu3+-doped ZnSe thin film is a promising candidate for electrochemical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei A, Zhao X, Liu J, Zhao Y (2013) Investigation on the structure and optical properties of chemically deposited ZnSe nanocrystalline thin films. Physica B 41:0120–0125

    Article  Google Scholar 

  2. Moses Ezhil Raj A, Mary Delphine S, Sanjeeviraja C, Jayachandran M (2010) Growth of ZnSe thin layers on different substrates and their structural consequences with bath temperature. Physica B 405:2485–2491

    Article  CAS  Google Scholar 

  3. Prabukanthan P, Harichandran G (2014) Electrochemical deposition of n-type ZnSe thin film buffer layer for solar cells. J Electrochem Soc 14:D736–D741

    Article  Google Scholar 

  4. Lohar GM, Dhaygude HD, Relekar BP, Rath MC, Fulari VJ (2016) Effect of 10 MeV energy of electron irradiation on Fe2+ doped ZnSe nanorods and their modified properties. Ionics 22:1451–1460

    Article  CAS  Google Scholar 

  5. Sai Prasanna CM, Austin Suthanthirara S (2016) Electrical, structural, and morphological studies of honeycomb-like microporous zinc-ion conducting poly (vinyl chloride)/poly (ethyl methacrylate) blend-based polymer electrolytes. Ionics 22:389–404

    Article  Google Scholar 

  6. Feng S, Yang R, Ding X, Li J, Guo C, Qu L (2015) Sensitive electrochemical sensor for the determination of pentachlorophenol in fish meat based on ZnSe quantum dots decorated multiwall carbon nanotubes nanocomposite. Ionics 21:3257–3326

    Article  CAS  Google Scholar 

  7. Radevici I, Sushkevich K, Huhtinen H, Nedeoglo D, Paturi P (2015) Influence of the ytterbium doping technique on the luminescent properties of ZnSe single crystals. J Lumin 158:236–242

    Article  CAS  Google Scholar 

  8. Xu J, Wanga W, Zhang X, Chang X, Shi Z, Haarberg GM (2015) Electrodeposition of ZnSe thin film and its photocatalytic properties. J Alloys Compd 632:778–782

    Article  CAS  Google Scholar 

  9. Doña JM, Herrero J (1995) Chemical-bath deposition of ZnSe thin films: process and material characterization. J Electrochem Soc 142(3):764–770

    Article  Google Scholar 

  10. Liu J, Wei AX, Zhuang MX, Zhao Y (2013) Investigation of the ZnSxSe1-x thin films prepared by chemical bath deposition. J Mater Sci-Mater Electron 24:1348–1353

    Article  CAS  Google Scholar 

  11. Samantilleke AP, Boyle MH, Young J, Dharmadas IM (1998) Growth of n-type and p-type ZnSe thin films using an electrochemical technique for application in larger area optoelectronic devices. J Mater Sci - Mater Electron 9:231–235

    Article  CAS  Google Scholar 

  12. Kowalik R, Fitzner K (2009) Analysis of the mechanism for electrodeposition of the ZnSe phase on Cu substrate. J Electroanal Chem 633:78–84

    Article  CAS  Google Scholar 

  13. Chubenko EB, Klyshko AA, Petrovich VA, Bondarenko VP (2009) Electrochemical deposition of zinc selenide and cadmium selenide onto porous silicon from aqueous acidic solutions. Thin Solid Films 517:5981–5987

    Article  CAS  Google Scholar 

  14. Jia L, Kou H, Jiang Y, Yu S, Li J, Wang C (2013) Electrochemical deposition semiconductor ZnSe on a new substrate CNTs/PVA and its photoelectrical properties. Electrochim Acta 107:71–77

    Article  CAS  Google Scholar 

  15. Riveros G, Gomez H, Henrquez R, Schrebler R, Marotti RE, Dalchiele EA (2001) Electrodeposition and characterization of ZnSe semiconductor thin films. Sol Energy Mater Sol Cells 70:255–268

    Article  CAS  Google Scholar 

  16. Bouroushian M, Kosanovic T, Loizos Z, Spyrellis N (2002) Electrochemical formation of zinc selenide from acidic aqueous solutions. J Solid State Electrochem 6:272–278

    Article  CAS  Google Scholar 

  17. Bouroushian M, Kosanovic T, Spyrellis N (2005) Oriented [1 1 1] ZnSe electrodeposits grown on polycrystalline CdSe substrates. J Cryst Growth 277:335–344

    Article  CAS  Google Scholar 

  18. Natarajan C, Sharon M, Levy-Clement C, Neumann-Spallart M (1994) Electrodeposition of zinc selenide. Thin Solid Films 237:118–123

    Article  CAS  Google Scholar 

  19. Kumar SR, Nuthalapati M, Maity J (2012) Development of nanocrystalline ZnSe thin film through electrodeposition from a non-aqueous solution. Scripta Mater 67:396–399

    Article  CAS  Google Scholar 

  20. Kumar P, Singh J, Pandey MK, Jeyanthi CE, Siddheswaran R, Paulraj M, Hui KN, Hui KS (2014) Synthesis, structural, optical and Raman studies of pure and lanthanum doped ZnSe nanoparticles. Mater Res Bull 49:144–150

    Article  CAS  Google Scholar 

  21. Liu N, Zhou W, Xu L, Tong L, Zhou J, Su W, Yu Y, Xu J, Ma Z (2012) Enhanced luminescence of ZnSe:Eu3+/ZnS core-shell quantum dots. J Non-Cryst Solids 358:2353–2356

    Article  CAS  Google Scholar 

  22. Yashaswini AK, Pandurangappa C (2014) Solvothermal synthesis, characterization and photoluminescence studies of ZnS:Eu nanocrystals. Opt Mater 37:537–542

    Article  Google Scholar 

  23. Lohar GM, Jadhav ST, Takale MV, Patil RA, Mab YR, Rath MC, Fulari VJ (2015) Photoelectrochemical cell studies of Fe2+ doped ZnSe nanorods using the potentiostatic mode of electrodeposition. J Colloid Interface Sci 458:136–146

    Article  CAS  Google Scholar 

  24. Metina H, Durmus S, Erata S, Ari M (2011) Characterization of chemically deposited ZnSe/SnO2/glass films: influence of annealing in Ar atmosphere on physical properties. Appl Surf Sci 257:6474–6480

    Article  Google Scholar 

  25. Zeng QZ, Xue SL, Wu SX, Gan KX, Xu L, Han JW, Zhou WK, Shi YT, Zou RJ (2015) Synthesis, field emission and optical properties of ZnSe nanobelts, nanorods and nanocones by hydrothermal method. Mater Sci Semicond Process 31:189–194

    Article  CAS  Google Scholar 

  26. Prabukanthan P, Rajesh Kumar T, Harichandran G (2015) Effect of Sm3+ on the structural, optical, magnetic and electrical properties of electrochemical deposition of ZnSe thin films. Mater Res Express 2:09610

    Article  Google Scholar 

  27. Lohar GM, Shinde SK, Rath MC, Fulari VJ (2014) Structural, optical, photoluminescence, electrochemical and photoelectrochemical properties of Fe doped ZnSe hexagonal nanorods. Mater Sci Semicond Process 26:548–554

    Article  CAS  Google Scholar 

  28. Yadav K, Dwivedi Y, Jaggi N (2015) Structural and optical properties of Ni doped ZnSe nanoparticles. J Lumin 158:181–187

    Article  CAS  Google Scholar 

  29. Mathew S, Rejikumar PR, Xavier J, Unnikrishnan NV (2007) Optical studies on Eu3+/ZnSe nanocrystal in silica hosts. Opt Mater 29:1689–1692

    Article  CAS  Google Scholar 

  30. Theerthagiri J, Senthil RA, Priya A, Madhavan J, Michael RJV (2014) Muthupandian Ashokkumar, Photocatalytic and photoelectrochemical studies of visible-light active a-Fe2O3–g-C3N4 nanocomposites. RSC Adv 4:38222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.P. would like to acknowledge the financial support of Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Fast Track Research Scheme, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabukanthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh Kumar, T., Prabukanthan, P., Harichandran, G. et al. Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films. Ionics 23, 2497–2507 (2017). https://doi.org/10.1007/s11581-017-2090-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2090-1

Keywords

Navigation