Skip to main content

Advertisement

Log in

Morphology-controlled PANI nanowire electrode by using deposition scan rate in H2SO4/PVA polymer electrolyte for electrochemical capacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) nanowire electrode was successfully prepared using electrodeposition method. The morphology, thickness, and electrochemical performance of PANI electrode can be controlled by varying the deposition scan rates. Lower deposition scan rate results in compact and aggregates of PANI nanowire morphology. The uniform nanowire of PANI was obtained at the applied scan rate of 100 mV s−1, and it was used as symmetric electrode coupled with H2SO4/polyvinyl alcohol (PVA) gel electrolyte. The different concentrations of H2SO4 acid in polymer electrolyte have influenced the electrochemical performance as well. The optimum specific capacitance and energy density of P100 PANI electrode in 3 M H2SO4/PVA gel polymer electrolyte was 377 F g−1 and 95.4 Wh kg−1 at the scan rate of 1 mV s−1. The good stability of the electrode in this system is applicable to many wearable electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kurra N, Wang R, Alshareef HN (2015) All conducting polymer electrodes for asymmetric solid-state supercapacitors. J Mater Chem A 3:7368–7374

    Article  CAS  Google Scholar 

  2. Dirican M, Yanilmaz M, Zhang X (2014) Free-standing polyaniline-porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors. RSC Adv 4:59427–59435

    Article  CAS  Google Scholar 

  3. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors—progress and prospects. Electrochim Acta 101:109–129

    Article  CAS  Google Scholar 

  4. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  5. Shown I, Ganguly A, Chen L-C, Chen K-H (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3:2–26

    Article  CAS  Google Scholar 

  6. Chen W, Rakhi RB, Alshareef HN (2013) Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J Mater Chem A 1:3315–3324

    Article  CAS  Google Scholar 

  7. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031

    Article  CAS  Google Scholar 

  8. Cho S, Shin K-H, Jang J (2013) Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Appl Mater Interfaces 5:9186–9193

    Article  CAS  Google Scholar 

  9. Zhang L, Zhao G, Wang Y (2013) Polyaniline nanowire electrodes with high capacitance synthesized by a simple approach. Mater Sci Eng: C 33:209–212

    Article  CAS  Google Scholar 

  10. Li Z, Liu E, Zhu Y, Hu T, Luo Z, Liu T (2015) Enhanced supercapacitive performance of porous activated carbon derived from polyaniline prepared by electrochemical synthesis. Mater Res Bull 64:6–11

    Article  Google Scholar 

  11. Xin G, Wang Y, Liu X, Zhang J, Wang Y, Huang J, Zang J (2015) Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor. Electrochim Acta 167:254–261

    Article  CAS  Google Scholar 

  12. Bonastre AM, Bartlett PN (2010) Electrodeposition of PANi films on platinum needle type microelectrodes. Application to the oxidation of ascorbate in human plasma. Anal Chim Acta 676:1–8

    Article  CAS  Google Scholar 

  13. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294–1301

    Article  CAS  Google Scholar 

  14. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586

    Article  CAS  Google Scholar 

  15. Focke WW, Wnek GE, Wei Y (1987) Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J Phys Chem 91:5813–5818

    Article  CAS  Google Scholar 

  16. Zhao G-Y, Li H-L (2008) Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors. Micropor Mesopor Mat 110:590–594

    Article  CAS  Google Scholar 

  17. Li G-R, Feng Z-P, Zhong J-H, Wang Z-L, Tong Y-X (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43:2178–2183

    Article  CAS  Google Scholar 

  18. Rusi MSR (2013) Synthesis of MnO2 particles under slow cooling process and their capacitive performances. Mater Lett 108:69–71

    Article  CAS  Google Scholar 

  19. Pereira VR, Isloor AM, Bhat UK, Ismail AF (2014) Preparation and antifouling properties of PVDF ultrafiltration membranes with polyaniline (PANI) nanofibers and hydrolysed PSMA (H-PSMA) as additives. Desalination 351:220–227

    Article  CAS  Google Scholar 

  20. Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2012) Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 5:1487

    Article  CAS  Google Scholar 

  21. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nanostructured ternary electrodes for energy-storage applications. Adv Energy Mater 2:381–389

    Article  CAS  Google Scholar 

  22. Zhang YX, Huang M, Li F, Wang XL, Wen ZQ (2014) One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes. J Power Sources 246:449–456

    Article  CAS  Google Scholar 

  23. Chen Y, Wang J-W, Shi X-C, Chen B-Z (2013) Pseudocapacitive characteristics of manganese oxide anodized from manganese coating electrodeposited from aqueous solution. Electrochim Acta 109:678–683

    Article  CAS  Google Scholar 

  24. Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J (2014) Synthesis of hollow polyaniline nano-capsules and their supercapacitor application. J Power Sources 272:915–921

    Article  CAS  Google Scholar 

  25. Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Z-S W, Gentle I, GQ L, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Article  CAS  Google Scholar 

  26. Rusi MSR (2014) High performance super-capacitive behaviour of deposited manganese oxide/nickel oxide binary electrode system. Electrochim Acta 138:1–8

    Article  CAS  Google Scholar 

  27. Sawangphruk M, Kaewsongpol T (2012) Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films. Mater Lett 87:142–145

    Article  CAS  Google Scholar 

  28. Ramesh TN, Kamath PV (2008) Nickel oxyhydroxide/manganese dioxide composite as a candidate electrode material for alkaline secondary cells. J Power Sources 175:625–629

    Article  CAS  Google Scholar 

  29. Zhang M, Guo S, Zheng L, Zhang G, Hao Z, Kang L, Liu Z-H (2013) Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol−gel process and its capacitance. Electrochim Acta 87:546–553

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the University of Malaya (grant nos. FP008-2013B and RP025 B-14AFR) for financial support. Rusi appreciate the Skim Bright Sparks University Malaya (SBSUM) for the scholarship awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Majid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusi, Sim, CK. & Majid, S.R. Morphology-controlled PANI nanowire electrode by using deposition scan rate in H2SO4/PVA polymer electrolyte for electrochemical capacitor. Ionics 23, 1219–1227 (2017). https://doi.org/10.1007/s11581-016-1938-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1938-0

Keywords

Navigation