Skip to main content
Log in

Impedance spectroscopy analysis of Li2SnO3

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, Li2SnO3 has been synthesized by the sol–gel method using acetates of lithium and tin. Thermogravimetric analysis (TGA) has been applied to the precursor of Li2SnO3 to determine the suitable calcination temperature. The formation of the compound calcined at 800 °C for 9 h has been confirmed by X-ray diffraction (XRD) analysis. The Li2SnO3 is then pelletized and electrically characterized by using electrochemical impedance spectroscopy (EIS) in the frequency range from 50 Hz to 1 MHz. The complex impedance spectra clearly show the dominating presence of the grain boundary effect on electrical properties whereas the complex modulus plots reveal two semicircles which are due to the grain (bulk) and grain boundary. The spectra of imaginary parts of both impedance and modulus versus frequency show the existence of peaks with the modulus plots exhibiting two peaks that are ascribed to the grain and grain boundary of the material. The peak maximum shifts to higher frequency with an increase in temperature and the broad nature of the peaks indicates the non-Debye nature of Li2SnO3. The activation energy associated with the dielectric relaxation obtained from the electrical impedance spectra is 0.67 eV. From the electric modulus spectra, the activation energies related to conductivity relaxation in the grain and grain boundary of Li2SnO3 are 0.59 and 0.69 eV, respectively. The conductivity–temperature relationship is thermally assisted and obeys the Arrhenius rule with the activation energy of 0.66 eV. The conduction mechanism of Li2SnO3 is via hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lang G (1966) Strukturvergleiche an ternären und quarternären Oxiden. Z Anorg Allg Chem 348:246–256

    Article  CAS  Google Scholar 

  2. Tarakina NV, Denisova TA, Maksimova LG, Baklanova YV, Tyutyunnik AP, Berger IF, Zubkov VG, van Tendeloo G (2009) Investigation of stacking disorder in Li2SnO3. Z Kristallogr Suppl 30:375–380

    Article  Google Scholar 

  3. Mather GC, Dussarrat C, Etourneau J, West AR (2000) A review of cation-ordered rock salt superstructure oxides. J Mater Chem 10:2219–2230

    Article  CAS  Google Scholar 

  4. Inagaki M, Nakai S, Ikeda T (1988) Synthesis and sintering of Li2SnO3. J Nucl Mater 160:224–228

    Article  CAS  Google Scholar 

  5. Moritani K, Moriyama H (1997) In situ luminescence measurement of irradiation defects in ternary lithium ceramics under ion beam irradiation. J Nucl Mater 248:132–139

    Article  CAS  Google Scholar 

  6. Tang T, Luo DL (2010) Density functional theory study of electronic structures in lithium silicates: Li2SiO3 and Li4SiO4. J Atomic Mol Sci 1:185–200

    Google Scholar 

  7. Zhang JL, Lu YD, Li BR, Zeng JL (1993) The preparation and electrical conduction of Li2SnO3 thick film humidity sensitive material. In: Proceedings of 43rd Electronic Components and Technology Conference, Orlando, FL, USA, 1–4 June 1993, pp 1095–1198

  8. Kovacheva D, Petrov K (1998) Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ionics 109:327–332

    Article  CAS  Google Scholar 

  9. Courtney IA, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052

    Article  CAS  Google Scholar 

  10. Zhang DW, Zhang SQ, Jin Y, Yi TH, Xie S, Chen CH (2006) Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries. J Alloys Compd 415:229–233

    Article  CAS  Google Scholar 

  11. Vaughey JT, Geyer AM, Fackler N, Jonhson CS, Edstrom K, Bryngelsson H, Benedek R, Thackeray MM (2007) Studies of layered lithium metal oxide anodes in lithium cells. J Power Sources 174:1052–1056

    Article  CAS  Google Scholar 

  12. Wang Q, Huang Y, Miao J, Zhao Y, Wang Y (2012) Synthesis and properties of carbon-doped Li2SnO3 nanocomposite as cathode materials for lithium-ion batteries. Mater Lett 71:66–69

    Article  CAS  Google Scholar 

  13. Belliard F, Irvine JTS (2001) Electrochemical comparison between SnO2 and Li2SnO3 synthesized at high and low temperatures. Ionics 7:16–21

    Article  CAS  Google Scholar 

  14. Teo LP, Buraidah MH, Alias NA, Kufian MZ, Majid SR, Arof AK (2011) Characterisation of Li2SnO3 by solution evaporation method using nitric acid as chelating agent. Mater Res Innov 15:S127–S131

    Article  Google Scholar 

  15. Teo LP, Buraidah MF, Nor AFM, Majid SR (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18:655–665

    Article  CAS  Google Scholar 

  16. Wang Q, Huang Y, Miao J, Wang Y, Zhao Y (2012) Hydrothermal derived Li2SnO3/C composite as negative electrode materials for lithium-ion batteries. Appl Surf Sci 258:6923–6929

    Article  CAS  Google Scholar 

  17. Wang Q, Huang Y, Zhao Y, Zhang W, Wang Y (2013) Preparation of Li2SnO3 and its application in lithium-ion batteries. Surf Interface Anal 45:1297–1303

    Article  CAS  Google Scholar 

  18. Berbenni V, Milanese C, Bruni G, Girella A, Marini A (2013) Synthesis of Li2SnO3 by solid state reaction and characterization by TG/DSC, XRPD and MTDSC. J Therm Anal Calorim 113:763–767

    Article  CAS  Google Scholar 

  19. Huang Y, Wang G-J, Wu T-H, Peng S-Y (1998) Catalytic oxydehydrogenation of isobutene over lithium-based oxides. J Nat Gas Chem 7:102–107

    CAS  Google Scholar 

  20. Kumar PR, Venkateswarlu M, Misra MM, Mohanty AK, Satyanarayana N (2013) Enhanced conductivity and electrical relaxation studies of carbon-coated LiMnPO4 nanorods. Ionics 19:461–469

    Article  CAS  Google Scholar 

  21. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sakunthala A (2010) Ionic conductivity studies on LiSmO2 by impedance spectroscopy. Ionics 16:317–321

    Article  CAS  Google Scholar 

  22. Vītiņš G, Ķizāne G, Lūsis A, Tīliks J (2003) Electrical conductivity studies in the system Li2TiO3-Li1.33Ti1.67O4. J Solid State Electrochem 6:311–319

    Google Scholar 

  23. Hossen MB, Hossain AKMA (2015) Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J Adv Ceram 4:217–225

    Article  CAS  Google Scholar 

  24. Khatri P, Behera B, Srinivas V, Choudhary RNP (2008) Complex impedance spectroscopy properties of Ba3V2O8 ceramics. Res Lett Mater Sci 2008:746256 5 pages

    Article  Google Scholar 

  25. Sahoo PS, Panigrahi A, Patri SK, Choudhary RNP (2010) Impedance and modulus spectroscopy studies of Ba4SrSmTi3V7O30 ceramics. Mater Sci-Poland 28:763–772

    CAS  Google Scholar 

  26. Thakur S, Rai R, Bdikin I, Valente MA (2016) Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater Res 19:1–8

    Article  Google Scholar 

  27. Pimenov A, Ullrich J, Lunkenheimer P, Loidl A, Rüscher CH (1998) Ionic conductivity and relaxations in ZrO-Y2O3 solid solutions. Solid State Ionics 109:111–118

    Article  CAS  Google Scholar 

  28. Vijayakumar M, Selvasekarapandian S, Bhuvaneswari MS, HiranKumar G, Ramprasad G, Subramanian R, Angelo PC (2003) Synthesis and ion dynamics studies of nanocrystalline Mg stabilized zirconia. Physica B 334:390–397

    Article  CAS  Google Scholar 

  29. Orliukas A, Dindune A, Kanepe Z, Ronis J, Kazakevicus E, Kezionis A (2003) Synthesis, structure and peculiarities of ionic transport of Li1.6Mg0.3Ti1.7(PO4)3 ceramics. Solid State Ionics 157:177–181

    Article  CAS  Google Scholar 

  30. Patro LN, Hariharan K (2009) AC conductivity and scaling studies of polycrystalline SnF2. Mater Chem Phys 116:81–87

    Article  CAS  Google Scholar 

  31. Selvasekarapandian S, Bhuvaneswari MS, Fujihara S, Koji S (2006) A comparative study of structural and impedance spectroscopic analysis of LixMVO4 (M = Ni, Co; x = 0.8, 1.0, 1.2). Acta Mater 54:1767–1776

    Article  CAS  Google Scholar 

  32. Baskaran N, Govindaraj G, Narayanasamy A (1997) A.c. conductivity and relaxation processes in silver selenochromate glass. Solid State Ionics 98:217–227

    Article  CAS  Google Scholar 

  33. Karoui K, Rhaiem AB, Guidara K (2011) Electrical characterization of the [N(CH3)4][N(C2H5)4]ZnCl4 compound. Ionics 17:517–525

    Article  CAS  Google Scholar 

  34. Louati B, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of LiCaPO4. Ionics 17:633–640

    Article  CAS  Google Scholar 

  35. Shukla A, Choudhary RNP (2012) Study of electrical properties of La3+/Mn4+-modified PbTiO3 nanoceramics. J Mater Sci 47:5074–5085

    Article  CAS  Google Scholar 

  36. Almond DP (1989) Developments in the understanding of the ionic conductivities of glasses. Mater Chem Phys 23:211–223

    Article  CAS  Google Scholar 

  37. Ahmad MM, Yamada K, Okuda T (2003) Ionic conduction and relaxation in KSn2F5 fluoride ion conductor. Physica B 339:94–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Ministry of Science, Technology and Innovation (MOSTI) and the Ministry of Higher Education (MOHE) of Malaysia (Nanofund grant no: 53-02-03-1089 and Fundamental Research Grant Scheme (FRGS) grant no: FP019-2014B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.P. Teo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, L. Impedance spectroscopy analysis of Li2SnO3 . Ionics 23, 309–317 (2017). https://doi.org/10.1007/s11581-016-1899-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1899-3

Keywords

Navigation