Skip to main content

Advertisement

Log in

Improved catalytic activity of Pt/rGO counter electrode in In2O3-based DSSC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A platinum/reduced graphene oxide (Pt/rGO) nanocomposite acting as a counter electrode (CE) was fabricated using a chemical bath deposition method for In2O3-based dye-sensitized solar cell (DSSC) via sol-gel technique. The report analyzes the morphological and electrochemical impedance spectroscopy of the annealing Pt/rGO films at 350, 400, and 450 °C. Micrograph images obtained from field emission scanning electron microscopy demonstrated the annealed films are highly porous. The energy-dispersive X-ray results show that the carbon atoms were homogeneously distributed on the film annealed at 400 °C. A good photovoltaic performance was exhibited with high photocurrent density of 8.1 mA cm−2 and power conversion efficiency (η) of 1.68 % at the Pt/rGO CE annealed at 400 °C. The employed electrochemical impedance spectroscopy analysis quantifies that the Pt/rGO films annealed at 400 °C provide more efficient charge transfer with the lowest effective recombination rate and high electron life time, hence improving the performance of Pt/rGO CE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108:8106–8118

    Article  CAS  Google Scholar 

  2. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353:737–740

    Article  Google Scholar 

  3. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  4. Hua Y, Zhang S, Zhao H, Will G, Liu P (2009) An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim Acta 54:1319–1324

    Article  Google Scholar 

  5. Yue G, Wu J, Xiao Y, Huang M, Lin J, Fan L, Lan Z (2013) Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochim Acta 54:64–70

    Article  Google Scholar 

  6. Bay L, West K, Jensen BW, Jacobsen T (2006) Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system. Sol Energ Mat Sol C 90:341–351

    Article  CAS  Google Scholar 

  7. Guai GH, Song QL, Guo CX, Lu ZS, Chen T, Ng CM, Li CM (2012) Graphene-Pt\ ITO counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Sol Energy 86:2041–2048

    Article  CAS  Google Scholar 

  8. Liberatore M, Decker F, Burtone L, Zardetto V, Brown TM, Reale A, Di Carlo A (2009) Using EIS for diagnosis of dye-sensitized solar cells performance. J Appl Electrochem 39:2291–2295

    Article  CAS  Google Scholar 

  9. Omar A, Abdullah H, Shaari S, Taha MR (2013) Characterization of zinc oxide dye-sensitized solar cell incorporation with single-walled carbon nanotubes. J Mater Res 28:1753–1760

    Article  CAS  Google Scholar 

  10. Ariyanto NP, Abdullah H, Syarif J, Yuliarto B, Shaari S (2010) Fabrication of zinc oxide-based dye-sensitized solar cell by chemical bath deposition. Funct Mater Let 3:303–307

    Article  CAS  Google Scholar 

  11. Hinsch A, Kroon JM, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J (2001) Long-term stability of dye-sensitized solar cells. Prog Photovolt 9:425

    Article  CAS  Google Scholar 

  12. Koo BK, Lee DY, Kim HJ, Lee WJ, Song JS, Kim HJ (2006) Seasoning effect of dye-sensitized solar cells with different counter electrodes. J Electroceram 17:79–82

    Article  CAS  Google Scholar 

  13. Xue Y, Liu J, Chen H, Wang R, Li D, Qu J, Dai L (2012) Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew Chem Int Ed 51:12124–12127

    Article  CAS  Google Scholar 

  14. Geim AK (2012) Graphene prehistory. Phys Scr T146:014003. doi:10.1088/0031-8949/2012/T146/014003

    Article  Google Scholar 

  15. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10:1555–1558

    Article  CAS  Google Scholar 

  16. Wang H, Hu YH (2012) Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci 5:8182–8188

    Article  CAS  Google Scholar 

  17. Roy M, Joseph D, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4:6203–6211

    Article  Google Scholar 

  18. Lu L, Li R, Fan K, Peng T (2010) Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol Energy 84:844–853

    Article  CAS  Google Scholar 

  19. Chung J, Lee J, Lim S (2010) Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency. Physica B 405:2593–2598

    Article  CAS  Google Scholar 

  20. Goswami N, Sharma DK (2010) Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique. Phys E 42:1675–1682

    Article  CAS  Google Scholar 

  21. Chen C, Long M, Wu H, Cai W (2013) One-step synthesis of Pt nanoparticles/reduced graphene oxide composite with enhanced electrochemical catalytic activity. SCIENCE CHINA Chem 56:354–361

    Article  CAS  Google Scholar 

  22. Cheng CE, Lin CY, Shan CH, Tsai SY, Lin KW, Chang CS, Chien FSS (2013) Platinum-graphene counter electrodes for dye-sensitized solar cells. J Appl Phys 114:014503. doi:10.1063/1.4812498

    Article  Google Scholar 

  23. Abdullah H, Mahalingam S, Omar A, Razali MZ, Shaari S, Asshari I (2014) Platinum-incorporating graphene counter electrode for In2O3-based DSSC with various annealing temperature. Adv Mater Res 911:266–270

    Article  CAS  Google Scholar 

  24. Yeh MH, Lin LY, Chang LY (2014) Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. Chem Phy Schem 15:1175–1181

    CAS  Google Scholar 

  25. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312

    Article  CAS  Google Scholar 

  26. Kim SJ, Ko HS, Jeong GH, Park KH, Yun JJ, Han EM (2014) Fabrication and characterization of reduced graphene oxide counter electrode for dye-sensitized solar cells. Mol Cryst Liq Cryst 598:1–5

    Article  CAS  Google Scholar 

  27. Wang ZL, Xu D, Huang Y, Wu Z, Wang LM, Zhang XB (2012) Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem Commun 48:976–978

    Article  CAS  Google Scholar 

  28. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  29. Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8:982–987

    Article  CAS  Google Scholar 

  30. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 18:5856–5857

    Article  Google Scholar 

  31. Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4:6203–6211

    Article  CAS  Google Scholar 

  32. Wan L, Wang S, Wang X, Dong B, Xu Z, Zhang X, Yang B, Peng S, Wang J, Xu C (2011) Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sci 13:468–475

    Article  CAS  Google Scholar 

  33. Mori S, Asano A (2010) Light intensity independent electron transport and slow charge recombination in dye-sensitized In2O3 solar cells: in contrast to the case of TiO2. J Phys Chem C 114:13113–13117

    Article  CAS  Google Scholar 

  34. Zhang B, Zhang NN, Chen JF, Hou Y, Yang S, Guo JW, Yang XH, Zhong JH, Wang HF, Hu P, Zhao HJ (2013) Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms. Sci Rep 3

  35. Mahalingam S, Abdullah H, Shaari S, Muchtar A (2015) Asshari I (2015) Structural, morphological, and electron transport studies of annealing dependent In2O3 dye-sensitized solar cell. Sci World J. doi:10.1155/2015/403848

    Google Scholar 

  36. Mahalingam S, Abdullah H, Shaari S, Muchtar A, Asshari I (2015) Optimization of SWCNTs loading for In2O3 based dye-sensitized solar cell application. Aust J Basic Appl Sci 9:44–47

    CAS  Google Scholar 

  37. Zhang DW, Li XD, Li HB, Chen S, Sun Z, Yin XJ, Huang SM (2011) Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49:5382

    Article  CAS  Google Scholar 

  38. Rollett A, Humphreys FJ, Rohrer GS, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, United Kingdom

    Google Scholar 

  39. Jacoby M (2005) Atomic imaging turns 50. Chem Eng News 83:13–16

    Article  Google Scholar 

  40. Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  41. Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797

    Article  CAS  Google Scholar 

  42. Sundaram RS, Gomez-Navarro C, Balasubramaniam K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050–3053

    Article  CAS  Google Scholar 

  43. Buckley RW (2007) Progress in solid state chemistry research. Nova Publishers, New York

    Google Scholar 

  44. Abdullah H, Razali MZ, Shaari S, Taha MR (2014) Enhancement of dye-sensitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing temperatures. Electron Mater Lett 10:611–619

    Article  CAS  Google Scholar 

  45. Omar A, Abdullah H, Razali MZ, Shaari S, Taha MR (2014) Growth and structural properties of ZnO-SWCNTs produced by chemical bath deposition and sol-gel methods. Adv Mater Res 895:460–473

    Article  Google Scholar 

  46. Barman SN, LeMieux MC, Baek J, Rivera R, Bao Z (2010) Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors. ACS Appl Mater Interfaces 2:2672–2678

    Article  CAS  Google Scholar 

  47. Janes R, Moore EA (2004) Metal-ligand bonding. Royal society of chemistry, United Kingdom

    Google Scholar 

  48. Chiu WH, Lee CH, Cheng HM, Lin HF, Liao SC, Wu JM, Hsieh WF (2009) Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy Environ Sci 2:694

    Article  CAS  Google Scholar 

  49. Carpenter NE (2014) Chemistry of sustainable energy. CRC Press, Boca Raton

    Book  Google Scholar 

  50. Smith WF, Hashemi J (2006) Foundations of materials science and engineering. Mcgraw-Hill Higher Education.

    Google Scholar 

  51. Miao X, Pan K, Pan Q, Zhou W, Wang L, Liao Y, Tian G, Wang G (2013) Highly crystalline graphene/carbon black composite counter electrodes with controllable content: synthesis, characterization and application in dye-sensitized solar cells. Electrochim Acta 96:155–163

    Article  CAS  Google Scholar 

  52. Zhang Y, Li X, Feng M, Zhou F, Chen J (2010) Photoelectrochemical performance of TiO2-nanotube-array film modified by decoration of TiO2 via liquid phase deposition. Surf Coat Technol 205:2572–2577

    Article  CAS  Google Scholar 

  53. Kalyanasundaram K (2010) Dye-sensitized solar cells. EPFL press, Switzerland

    Google Scholar 

  54. Yoon CH, Vittal R, Lee J, Chae WS, Kim KJ (2008) Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochim Acta 53:2890–2896

    Article  CAS  Google Scholar 

  55. Calogero G, Calandra P, Irrera A, Sinopoli A, Citro I, Marco GD (2011) A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ Sci 4:1838–1844

    Article  CAS  Google Scholar 

  56. Dao VD, Ko SH, Choi HS, Lee JK (2012) Pt-NP–MWNT nanohybrid as a robust and low-cost counter electrode material for dye-sensitized solar cells. J Mater Chem 22:14023–14029

    Article  CAS  Google Scholar 

  57. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 47:4213–4225

    Article  CAS  Google Scholar 

  58. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalingam, S., Abdullah, H., Shaari, S. et al. Improved catalytic activity of Pt/rGO counter electrode in In2O3-based DSSC. Ionics 22, 2487–2497 (2016). https://doi.org/10.1007/s11581-016-1759-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1759-1

Keywords

Navigation