Skip to main content
Log in

Sintering and electrical conductivity of gadolinia-doped ceria

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bulk specimens of Ce0.9Gd0.1O2-δ prepared with powders within a range of specific surface area were sintered in oxidizing, inert, and reducing atmospheres. The aim of this work is to investigate the effects of the sintering atmosphere on the microstructure and grain and grain boundary conductivities of the solid electrolyte. The lattice parameter determined by Rietveld refinement is 0.5420(1) nm, and the microstrain was found negligible in the powder materials. Specimens sintered in the Ar/4 % H2 mixture display larger average grain sizes independent on the particle size of the starting powders. The grain and grain boundary conductivities of specimens sintered under reducing atmosphere are remarkably lower than those sintered under oxidizing and inert atmospheres. The activation energy (∼0.90 eV) for total electrical conductivity remains unchanged with both the initial particle size and the sintering atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:63–88. doi:10.1111/j.1151-2916.1993

    Article  Google Scholar 

  2. Steel BCH (2000) Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129:95–110. doi:10.1016/S0167-2738(99)00319-7

    Article  Google Scholar 

  3. Kroeger FA, Vink HJ (1956) In: Seitz F, Turnbull D (eds) Relations between the concentrations of imperfections in crystalline solids. Solid State Physics v 3 Academic Press, New York, p. 307

    Google Scholar 

  4. Tuller HL, Nowick AS (1977) Small polaron electron transport in reduced CeO2 single crystals. J Phys Chem Solids 38:859–867. doi:10.1016/0022-3697(77)90124-X

    Article  CAS  Google Scholar 

  5. Tuller HL, Nowick AS (1975) Doped ceria as a solid electrolyte. J Electrochem Soc 122:255–259. doi:10.1149/1.2134190

    Article  CAS  Google Scholar 

  6. Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate temperature solid oxide fuel cells. Progr Mater Sci 57:804–874. doi:10.1016/j.pmatsci.2011.08.002

    Article  CAS  Google Scholar 

  7. Dikmen S (2010) Effect of co-doping with Sm3+, Bi3+, La3+ and Nd3+ on the electrochemical properties of hydrothermally prepared gadolinium-doped ceria. J Alloy Compd 491:106–112. doi:10.1016/j.jallcom.2009.11006

    Article  CAS  Google Scholar 

  8. Gil V, Moure C, Durán P, Tartaj J (2007) Low temperature densification and grain growth of Bi2O3-doped-ceria gadolinia ceramics. Solid State Ionics 178:359–365. doi:10.1016/j.ssi.2007.02.002

    Article  CAS  Google Scholar 

  9. Dong YC, Hampshire S, Zhou JE, Meng GY (2011) Synthesis and sintering of Gd-doped CeO2 electrolytes with and without 1at.% CuO dopping for solid oxide fuel cell applications. Int J Hydrog Energy 36:5054–5066. doi:10.1016/j.ijhydene.2011.01.030

    Article  CAS  Google Scholar 

  10. Horovistiz AL, Muccillo ENS (2012) Microstructural and electrical characterizations of chemically prepared Ce0.8Gd0.2-x(Ag, Sr)xO1.9 (0≤x≤0.02). Solid State Ionics 225:428–431. doi:10.1016/j.ssi.2012.05.027

    Article  CAS  Google Scholar 

  11. He Z, Yuan H, Glasscock JA, Chatzichristodoulou C, Phair JW, Kaiser A, Ramousse S (2010) Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95-δ in a reducing atmosphere. Acta Mater 58:3860–3866. doi:10.1016/j.actamat.2010.03.046

    Article  CAS  Google Scholar 

  12. Esposito V, Ni DW, He Z, Zhang W, Prasad AS, Glasscock JA, Chatzichristodoulou C, Ramousse S, Kaiser A (2013) Enhanced mass diffusion phenomena in highly defective doped ceria. Acta Mater 61:6290–6300. doi:10.1016/j.actamat.2013.07.012

    Article  CAS  Google Scholar 

  13. Kim KJ, Choi GM (2015) Phase stability and oxygen non-stoichiometry of Gd-doped ceria during sintering in reducing atmosphere. J Electroceram. doi:10.1007/s10832-015-9993-8

    Google Scholar 

  14. Batista RM, Muccillo ENS (2014) Effect of sintering atmosphere and particle size on the ionic conductivity of gadolinia-doped ceria. ECS Trans 61:361–367. doi:10.1149/06101.0361ecst

    Article  CAS  Google Scholar 

  15. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94. doi:10.1016/S0167-2738(99)00318-5

    Article  CAS  Google Scholar 

  16. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105–1117. doi:10.1023/A:1004817506146

    Article  CAS  Google Scholar 

  17. Mi DW, Glasscock JA, Pons A, Zhang W, Prasad A, Sanna S, Pryds N, Esposito V (2014) Densification of highly defective ceria by high temperature controlled re-oxidation. J Electrochem Soc 161:F3072–F3078. doi:10.1149/2.0121411jes

    Article  Google Scholar 

  18. McBride BJR, Hass KC, Poindexter BD, Weber WH (1994) Raman X-ray studies of Ce1-xRExO2-y, where RE = La, Pr, Nd, Eu, Gd and Tb. J Appl Phys 76:2435–2441. doi:10.1063/1.357593

    Article  CAS  Google Scholar 

  19. Otake T, Yugami H, Saito N, Kawamura K, Kawada T, Mizusaki J (2000) Ce3+ concentration in ZrO2-CeO2-Y2O3 studied by electronic Raman spectroscopy. Solid State Ionics 135:663–667. doi:10.1016/S0167-2738(00)00428-8

    Article  CAS  Google Scholar 

  20. Abi-aad E, Bechara R, Grimblot J, Aboukais A (1993) Preparation and characterization of CeO2 under an oxidizing atmosphere. Thermal Analysis, XPS, and EPR Study. Chem Mater 5:793–797. doi:10.1021/cm00030a013

    Article  CAS  Google Scholar 

  21. Fierro JLG, Soria J, Sanz J, Rojo JM (1987) Induced changes in ceria by thermal treatments under vacuum or hydrogen. J Solid State Chem 66:154–162. doi:10.1016/0022-4596(87)90230-1

    Article  CAS  Google Scholar 

  22. Li G, Mao Y, Li L, Feng S, Wang M, Yao X (1999) Solid solubility and transport properties of nanocrystalline (CeO2)1-x(BiO1.5)x by hydrothermal conditions. Chem Mater 11:1259–1266. doi:10.1021/cm9806735

    Article  CAS  Google Scholar 

  23. Li L, Lin X (2001) Solid solubility and transport properties of Ce1-xNdxO2-δ nanocrystalline solid solutions by a sol-gel route. J Mater Res 16:3207–3213. doi:10.1557/JMR.2001.0442

    Article  CAS  Google Scholar 

  24. Sin A, Yu D, Zaopo A, Aricó AS, Gullo L, La Rosa D, Siracusano S, Antonucci V, Oliva C, Ballabio O (2004) Preparation and sintering of Ce1-xGdxO2-x/2 nanopowders and their electrochemical and EPR characterization. Solid State Ionics 175:361–366. doi:10.1016/j.ssi.2004.03.034

    Article  CAS  Google Scholar 

  25. Rakhmatullin RM, Aminov LK, Kurkin IN, Boetvher R, Poppl A, Ávila-Paredes H, Kim S, Sen S (2009) Electron paramagnetic resonance linewidth narrowing of Gd3+ ions in Y-doped ceria nanocrystals with decreasing crystallite size. J Chem Phys 131:124515. doi:10.1063/1.3225487

    Article  CAS  Google Scholar 

  26. Kliava J, Malakhovskii A, Edelman I, Potseluyko A, Petrakovskaya E, Melnikova S, Zarubina T, Petrovxkii G, Bruckental Y, Yeshurun Y (2005) Unusual magnetic transitions and nature of magnetic resonance spectra in oxide glasses containing gadolinium. Phys Rev B 71:104406. doi:10.1103/PhysRevB71.104406

    Article  Google Scholar 

  27. Nakamura F, Senoh K, Tamura T, Ochiai Y, Narahara Y (1989) Magnetic interactions in GdBa2Cu3Oy. Physica C 162:1287–1288. doi:10.1016/0921-4534(89)90696-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from FAPESP (#2013/07296-2), CNPq (#573636/2008-7), and CNEN; the Laboratory of Molecular Spectroscopy of the University of S. Paulo for the Raman experiments; and Prof. M. Kleitz for the comments on the manuscript. R. M. Batista acknowledges CAPES for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. S. Muccillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, R.M., Ferreira, A.M.D.C. & Muccillo, E.N.S. Sintering and electrical conductivity of gadolinia-doped ceria. Ionics 22, 1159–1166 (2016). https://doi.org/10.1007/s11581-016-1648-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1648-7

Keywords

Navigation