Skip to main content
Log in

Surface modification of Mg-doped spinel with different Li-containing manganese oxides

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mg-doped spinel LiMg0.05Mn1.95O4 was synthesized and coated with three types of Li-containing manganese oxides (Li2Mn4O9, Li4Mn5O12, and LiNi0.5Mn1.5O4) to improve the cycling properties at room temperature and at 50 °C via a coprecipitation method. The as-prepared spinels were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), inductively coupled plasma (ICP), and electrochemical tests. The results indicate that all the coated samples show enhanced electrochemical performance including higher initial charge-discharge capacities and more stable cycling properties as well as improved coulombic efficiency. Especially, the LiNi0.5Mn1.5O4-coated sample delivers the highest initial discharge capacity of 129 mAh/g with capacity retention of 82.5 % as well as the best coulombic efficiency of 92.1 %. This improved performance could be attributed to the enhanced electrochemical kinetics by successful surface modification of spinels with Li-containing manganese oxides via coprecipitation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1998) J Power Sources 74:198–201

    Article  CAS  Google Scholar 

  2. Wang GJ, Fu LJ, Zhao NH, Yang LC, Wu YP, Wu HQ (2007) Angew Chem Int Ed 46:295–297

    Article  Google Scholar 

  3. Luo JY, Xia YY (2007) Adv Funct Mater 17:3877–3884

    Article  CAS  Google Scholar 

  4. Huang H, Vincent CA, Bruce PG (1999) J Electrochem Soc 146:3649–3654

    Article  CAS  Google Scholar 

  5. Amatucci G, Tarascon JM (2002) J Electrochem Soc 149:K31–46

    Article  CAS  Google Scholar 

  6. Wang X, Nakamura H, Masaki Y (2002) J Power Sources 110:19–26

    Article  CAS  Google Scholar 

  7. Guo H, Ikuta H, Uchida T, Wakihara M (1996) J Electrochem Soc 143:178–182

    Article  Google Scholar 

  8. Gummow RJ, Kock AD, Thackeray MM (1994) Solid State Ionics 69:59–67

    Article  CAS  Google Scholar 

  9. Robertson AD, Lu S, Averill WF, Howard JWF (1997) J Electrochem Soc 144:3500–3505

    Article  CAS  Google Scholar 

  10. Wang X, Tanaike O, Kodama M, Hatori H (2007) J Power Sources 168:282–287

    Article  CAS  Google Scholar 

  11. Kim W, Han D, Ryu W, Lim S, Kwon H (2012) Electrochim Acta 71:17–21

    Article  CAS  Google Scholar 

  12. Lee S, Kim K, Moon H, Kim H, Cho B, Cho W, Ju J, Park J (2004) J Power Sources 126:150–155

    Article  CAS  Google Scholar 

  13. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Electrochem Commun 5:940–945

    Article  CAS  Google Scholar 

  14. Liu D, Liu X, He Z (2007) J Alloys Compd 436:387–391

    Article  CAS  Google Scholar 

  15. Liu D, He Z, Liu X (2007) Mater Lett 61:4703–4706

    Article  CAS  Google Scholar 

  16. Chan HW, Duh JG, Sheen SR (2006) Electrochim Acta 51:3645–3651

    Article  CAS  Google Scholar 

  17. Liu D, Liu X, He Z (2007) Mater Chem Phys 105:362–366

    Article  CAS  Google Scholar 

  18. Thackeray MM, Johnson CS, Kim J-S, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA (2003) Electrochem Commun 5:752–758

    Article  CAS  Google Scholar 

  19. Park S, Kim Y, Kang Y, Kim K, Lee P, Lee J (2001) J Power Sources 103:86–92

    Article  CAS  Google Scholar 

  20. Yuan YF, Wu HM, Guo SY, Wu JB, Yang JL, Wang XL, Tu JP (2008) Appl Surf Sci 255:2225–2229

    Article  CAS  Google Scholar 

  21. Thackeray MM, de Kock A, Roussouw MH, Liles D, Bittihn R, Hoge D (1992) J Electrochem Soc 139(2):363–366

    Article  CAS  Google Scholar 

  22. Masquelier C, Tabuchi M, Ado K, Kanno R, Kobayashi Y, Maki Y, Nakamura O, Goodenough JB (1996) J Solid State Chem 123:255–266

    Article  CAS  Google Scholar 

  23. Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dan JR (1997) J Electrochem Soc 144:205–213

    Article  CAS  Google Scholar 

  24. Dokko K, Mohamedi M, Anzue N, Itoh T, Uchida I (2002) J Mater Chem 12:3688–3693

    Article  CAS  Google Scholar 

  25. Sun Y, Myung S, Park B, Prakash J, Belharouak I, Amine K (2009) Nat Mater 8:320–324

    Article  CAS  Google Scholar 

  26. Xia Y, Kumada N, Yoshio M (2000) J Power Sources 90:135–138

    Article  CAS  Google Scholar 

  27. Santhanam R, Rambabu B (2010) J Power Sources 195:5442–5452

    Article  CAS  Google Scholar 

  28. Tarascon JM, Guyomard D (1993) Electrochem Acta 38:1221–1231

    Article  CAS  Google Scholar 

  29. Thackeray MM (1997) Prog Solid State Chem 25:1–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation (No. 2090504) and the opening subject of the State Key Laboratory of Electroanalytical Chemistry (SKLEAC201109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, J., Wu, J. et al. Surface modification of Mg-doped spinel with different Li-containing manganese oxides. Ionics 21, 1851–1856 (2015). https://doi.org/10.1007/s11581-014-1364-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1364-0

Keywords

Navigation