Skip to main content
Log in

AC conductivity and mechanism of conduction study of lithium barium pyrophosphate Li2BaP2O7 using impedance spectroscopy

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Li2BaP2O7 compound has been obtained by the conventional solid-state reaction and characterized by X-ray powder diffraction. The title material crystallizes in the monoclinic system with C2/c space group. Electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 589–724 K. Temperature dependence of the DC conductivity and modulus was found to obey the Arrhenius law. The obtained values of activation energy are different which confirms that transport in the titled compound is not due to a simple hopping mechanism. AC conductivity measured follows the power-law dependence σ AC ∼ ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ohzuku T, Brodd RJ (2007) J Power Sources 174:449–456

    Article  CAS  Google Scholar 

  2. Raijmakers LHJ, Danilov DL, van Lammeren JPM, Lammers MJG, Notten PHL (2014) J Power Sources 247:539–544

    Article  CAS  Google Scholar 

  3. Louati B, Hlel F, Guidara K (2009) J Alloys Compd 486:299–303

    Article  CAS  Google Scholar 

  4. Wani JA, Dhoble NS, Kokode NS, Dhoble SJ (2014) J Lumin 147:223–228

    Article  CAS  Google Scholar 

  5. Dridi N, Arbib E, Boukhari A, Holt EM (2002) Acta Crystallogr C 58:74–75

    Article  Google Scholar 

  6. Kulkarni S, Nagabhushana BM, Parvatikar N, Koppalkar A, Shivakumara C, Damle R (2014) Mater Res Bull 50:197–202

    Article  CAS  Google Scholar 

  7. Intatha U, Eitssayeam S, Wang J, Tunkasiri T (2010) Curr Appl Phys 10:21–25

    Article  Google Scholar 

  8. Cheikh A, Madani A, Touati A, Boussetta H, Monty C (2001) J Eur Ceram Soc 21:1837–1841

    Article  CAS  Google Scholar 

  9. Zaafouri A, Megdiche M, Gargouri M (2014) J Alloys Compd 584:152–158

    Article  CAS  Google Scholar 

  10. Brahma S, Choudhary RNP, Thakur AK (2005) Physica B 355:188–201

    Article  CAS  Google Scholar 

  11. Karaa N, Hamdi B, Ben Salah A, Oueslati A, Zouari R (2010) J Inorg Organomet Polym 20:746–754

    Article  CAS  Google Scholar 

  12. Ur Rahman A, Rafiq MA, Karim S, Maaz K, Siddique M, Hasan MM (2011) J Phys D Appl Phys 44:165404

    Article  Google Scholar 

  13. Foschini CR, Souza DPF, Paulin Filho PI, Varela JA (2001) J Eur Ceram Soc 21:1143–1150

    Article  CAS  Google Scholar 

  14. Muccillo ENS, Kleitz M (1995) J Eur Ceram Soc 15:51–55

    Article  CAS  Google Scholar 

  15. Murawski L, Barczynski RJ (2005) Solid State Ionics 176:2145–2151

    Article  CAS  Google Scholar 

  16. Dinesha ML, Prasanna GD, Naveen CS, Jayanna HS (2013) Indian J Phys 87:147–153

    Article  CAS  Google Scholar 

  17. Abdelkafi Z, Abdelmoula N, Khemakhem H, Bidault O, Maglione M (2006) J Appl Phys 100:114111

    Article  Google Scholar 

  18. Elwej R, Hamdi M, Hannachi N, Hlel F (2014) Spectrochim Acta A Mol Biomol Spectrosc 121:632–640

    Article  CAS  Google Scholar 

  19. Hutchins MG, Abu-Alkhair O, El-Nahass MM, Abdel-Hady K (2007) J Non-Cryst Solids 353:4137–4142

    Article  CAS  Google Scholar 

  20. Prasad K, Lily, Kumari K, Yadav KL (2007) J Phys Chem Solids 68:1508–1514

    Article  CAS  Google Scholar 

  21. Ben Rhaiem A, Jomni F, Karoui K, Guidara K (2013) J Mol Struct 1035:140–144

    Article  CAS  Google Scholar 

  22. Sidebottom DL (2009) Rev Mod Phys 81:999–1014

    Article  Google Scholar 

  23. Elissalde C, Ravez J (2001) J Mater Chem 11:1957–1967

    Article  CAS  Google Scholar 

  24. Almond DP, West AR (1983) Solid State Ionics 11:57–64

    Article  CAS  Google Scholar 

  25. Gerhardt R (1994) J Phys Chem Solids 55:1491–1506

    Article  CAS  Google Scholar 

  26. Rkau JM, Yong Juna Xu, Senegas J, Le Deitb Ch, Poulain M (1997) Solid State Ion 95:191–199

  27. Bobe JM, Réau JM, Senegas J, Poulain M (1995) Solid State Ionics 82:39–52

    Article  CAS  Google Scholar 

  28. Bose A, Mandal A, Mitra S, De SK, Banerjee S, Chakravorty D (2013) Indian J Phys 87:977–981

    Article  CAS  Google Scholar 

  29. Paramesh G, Vaish R, Varma KBR (2011) J Non-Cryst Solids 357:1479–1484

    Article  CAS  Google Scholar 

  30. Mahamoud H, Louati B, Hlel F, Guidara K (2011) J Alloys Compd 509:6083–6089

    Article  CAS  Google Scholar 

  31. Arun Kumar D, Selvasekarapandian S, Nithya H, Sakunthala A, Hema M (2010) Physica B 405:3803–3807

    Article  CAS  Google Scholar 

  32. Vinoth Rathan S, Govindaraj G (2010) Mater Chem Phys 120:255–262

    Article  CAS  Google Scholar 

  33. Shukla A, Choudhary RNP (2011) Curr Appl Phys 11:414–422

    Article  Google Scholar 

  34. Tachez M, Mercier R, Malugani JP, Chieux P (1987) Solid State Ionics 25:263–270

    Article  CAS  Google Scholar 

  35. Ben Said R, Louati B, Guidara K, Kamoun S (2014) Ionics. doi:10.1007/s11581-013-1060-5

    Google Scholar 

  36. Adnan SBRS, Mohamed NS (2014) Ceram Int 40:5033–5038

    Article  CAS  Google Scholar 

  37. Thongbai P, Putasaeng B, Yamwong T, Amornkitbamrung V, Maensiri S (2014) J Alloys Compd 582:747–753

    Article  CAS  Google Scholar 

  38. Sentürk E, Köseoglu Y, Sasmaz T, Alan F, Tan M (2013) J Alloys Compd 578:90–95

    Article  Google Scholar 

  39. Jain H, Mundy JN (1987) J Non-Cryst Solids 91:315–323

    Article  CAS  Google Scholar 

  40. Elliott SR (1988) Solid State Ionics 27:131–149

    Article  Google Scholar 

  41. Li W, Schwartz RW (2006) Appl Phys Lett 89:242906

    Article  Google Scholar 

  42. Nasri S, Megdiche M, Guidara K, Gargouri M (2013) Ionics. doi:10.1007/s11581-013-0927-9

    Google Scholar 

  43. Jonscher AK (1981) J Mater Sci 16:2037–2060

    Article  CAS  Google Scholar 

  44. Bekheet AE, Hegab NA (2009) Vacuum 83:391–396

    Article  Google Scholar 

  45. Abdel Wahab FA, Abdel-Baki M (2009) J Non-Cryst Solids 355:2239–2249

    Article  CAS  Google Scholar 

  46. Ghosh A, Chakravorty D (1990) J Phys Condens Matter 2:5365–5372

    Article  CAS  Google Scholar 

  47. Megdiche M, Perrin-pellegrino C, Gargouri M (2014) J Alloys Compd 584:209–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marwa Krichen or Makram Megdiche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krichen, M., Megdiche, M., Guidara, K. et al. AC conductivity and mechanism of conduction study of lithium barium pyrophosphate Li2BaP2O7 using impedance spectroscopy. Ionics 21, 935–948 (2015). https://doi.org/10.1007/s11581-014-1261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1261-6

Keywords

Navigation