Skip to main content
Log in

Influences on power performances of metal oxide additives for LiFePO4 electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Metal oxide additives are added into LiFePO4 electrodes attempting to improve cell power performances. Electrochemical performances are tested with 5 wt% different sizes of neutral alumina, nano Al2O3, and nano MgO individually comparing with those with 5 wt% more active LiFePO4 and acetylene black. The polarization between charge and discharge plateaus is reduced not only by adding more conductive acetylene black, but also by adding all these insulated metal oxide additives. Adding natural alumina and nano MgO can significantly increase rate capacities. This might be because of their “lithium ion saver” effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144(4):1188

    Article  CAS  Google Scholar 

  2. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22(3):691

    Article  CAS  Google Scholar 

  3. Nishimura S-i, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A (2008) Nat Mater 7(9):707

    Article  CAS  Google Scholar 

  4. Gaberscek M, Dominko R, Jamnik J (2007) Electrochem Commun 9(12):2778

    Article  CAS  Google Scholar 

  5. Chen G, Song X, Richardson TJ (2006) Electrochem Solid-State Lett 9(6):A295

    Article  CAS  Google Scholar 

  6. Nan C, Lu J, Chen C et al (2011) J Mater Chem 21(27):9994

    Article  CAS  Google Scholar 

  7. Wang L, He X, Sun W, Wang J, Li Y, Fan S (2012) Nano Lett 12(11):5632

    Article  CAS  Google Scholar 

  8. Chung S-Y, Bloking JT, Chiang Y-M (2002) Nat Mater 1(2):123

    Article  CAS  Google Scholar 

  9. Omenya F, Chernova NA, Upreti S, Zavalij PY, Nam K-W, Yang X-Q, Whittingham MS (2011) Chem Mater 23(21):4733

    Article  CAS  Google Scholar 

  10. Yang G, Jiang C, He X, Ying J, Cai F (2012) Ionics 18(1-2):59

    Article  Google Scholar 

  11. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3(3):147

    Article  CAS  Google Scholar 

  12. Jung SC, Han Y-K (2013) J Phys Chem Lett 4(16):2681

    Article  CAS  Google Scholar 

  13. Hao S, Wolverton C (2013) J Phys Chem C 117(16):8009

    Article  CAS  Google Scholar 

  14. Zhang ZR, Liu HS, Gong ZL, Yang Y (2004) J Power Sources 129(1):101

    Article  CAS  Google Scholar 

  15. Thackeray MM, Johnson CS, Kim JS, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA (2003) Electrochem Commun 5(9):752

    Article  CAS  Google Scholar 

  16. Cho J, Kim CS, Yoo SI (2000) Electrochem Solid-State Lett 3(8):362

    Article  CAS  Google Scholar 

  17. Iriyama Y, Kurita H, Yamada I, Abe T, Ogumi Z (2004) J Power Sources 137(1):111

    Article  CAS  Google Scholar 

  18. Sun Y-K, Hong K-J, Prakash J (2003) J Electrochem Soc 150(7):A970

    Article  CAS  Google Scholar 

  19. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394(6692):456

    Article  CAS  Google Scholar 

  20. Wieczorek W, Lipka P, Żukowska G, Wycislik H (1998) J Phys Chem B 102(36):6968

    Article  CAS  Google Scholar 

  21. Kumar R, Subramania A, Sundaram NTK, Kumar GV, Baskaran I (2007) J Membr Sci 300(1–2):104

    Article  CAS  Google Scholar 

  22. Aravindan V, Vickraman P (2007) J Phys D Appl Phys 40:7

    Article  Google Scholar 

  23. Pandey GP, Agrawal RC, Hashmi SA (2009) J Power Sources 190(2):563

    Article  CAS  Google Scholar 

  24. Rao MM, Liu JS, Li WS, Liao YH, Liang Y, Zhao LZ (2010) J Solid State Electrochem 14:255

    Article  CAS  Google Scholar 

  25. Marcinek M, Bac A, Lipka P, Zalewska A, Zukowska G, Borkowska R, Wieczorek (2000) J Phys Chem B 104(47):11088

    Article  CAS  Google Scholar 

  26. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Adv Mater 19(15):1963–1966

    Article  CAS  Google Scholar 

  27. Xu K (2004) Chem Rev 104(10):4303–4417

    Article  CAS  Google Scholar 

  28. Wang GX, Yang L, Chen Y, Wang JZ, Bewlay S, Liu HK (2005) Electrochim Acta 50(24):4649–4654

    Article  CAS  Google Scholar 

  29. Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Chem Mater 21(21):5300–5306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the MOST (Grant no. 2011CB935902, no. 2013CB934000, no. 2014DFG71590, no. 2010DFA72760, no. 2011CB711202, no. 2013AA050903, no.2011AA11A257, and no. 2011AA11A254), the China Postdoctoral Science Foundation (Grant no. 2013M530599 and no. 2013M540929), the Tsinghua University Initiative Scientific Research Program (Grant no. 2010THZ08116, no.2011THZ08139, no.2011THZ01004, and no. 2012THZ08129), and the State Key Laboratory of Automotive Safety and Energy (Grant no. ZZ2012-011). This research is also financially supported by Alees (Advanced Lithium Electrochemistry Co., Ltd). We are highly appreciative of the help from Associate Professor Jiaping Wang and Fei Zhao in Tsinghua-Foxconn Nanocenter. We are grateful for Engineer Hongying Liao in Beijing Institute of Chemical Reagents for her help on testing HF content in electrolyte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., He, X., Jiang, C. et al. Influences on power performances of metal oxide additives for LiFePO4 electrodes. Ionics 20, 1517–1523 (2014). https://doi.org/10.1007/s11581-014-1132-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1132-1

Keyword

Navigation