Skip to main content
Log in

Quality assessments of electrochromic devices: the possible use of 1/f current noise

  • Short Communications
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrochromic (EC) devices, capable of modulating their optical transmittance by charge insertion/extraction, were produced by laminating films comprised of nanoporous W oxide and Ni–V oxide by a polymer electrolyte and having this three-layer stack between transparent conducting In2O3:Sn films backed by polyester foils. 1/f noise in the current (I) was observed when the charged (colored) EC device was discharged via a resistor. The power spectral density S i at fixed frequency scaled as S i  ∼ I 2. Extended color/bleach cycling degraded the optical quality and homogeneity of the device and concomitantly increased the 1/f noise intensity. These initial data indicate that 1/f noise has a potential to serve as a quality measure for EC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam (reprinted 2002)

  2. Avendaño E, Azens A, Niklasson GA, Granqvist CG (2004) Solar Energy Mater Solar Cells 84:337

    Article  Google Scholar 

  3. Niklasson GA, Granqvist CG (2007) J Mater Chem 17:127

    Article  CAS  Google Scholar 

  4. Buyan M, Brühwiler PA, Azens A, Granqvist CG (2006) Int J Ind Ergon 36:11

    Article  Google Scholar 

  5. Bell JM, Skryabin IL (1999) Solar Energy Mater. Sol Cells 56:437

    CAS  Google Scholar 

  6. Lampert CM, Agrawal A, Baertlien C, Nagai J (1999) Solar Mater Solar Cells 56:449

    Article  CAS  Google Scholar 

  7. Smulko J, Azens A, Kish LB, Granqvist CG (2007) Ionics (in press)

  8. van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  9. Vandamme LKJ (1994) IEEE Trans Electron Devices 41:2176

    Article  CAS  Google Scholar 

  10. Gingl Z, Pennetta C, Kiss LB, Reggiani L (1996) Semicond Sci Technol 11:1770

    Article  CAS  Google Scholar 

  11. Pennetta C, Reggiani L, Kiss LB (1999) Physica A 266:214

    Article  Google Scholar 

  12. Kish LB, Granqvist CG (2000) Microelectron Reliab 40:1833

    Article  Google Scholar 

  13. Jones BK, Graham CN, Konczakowska A, Hasse L (2001) Microelectron Reliab 41:87

    Article  Google Scholar 

  14. Bard AJ, Faulkner LJ (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  15. Baert DHJ, Vervaet AAK (2003) J Power Sources 114:357

    Article  CAS  Google Scholar 

  16. Kovacs GTA (1998) Micromachined transducers sourcebook. McGraw-Hill, New York

    Google Scholar 

  17. Hladky K, Dawson JL (1982) Corros Sci 22:231

    Article  CAS  Google Scholar 

  18. Cottis RA (2006) Eletrokhim 42:557 (English translation: Russian J Electrochem 42:497)

    Google Scholar 

  19. Smulko JM, Darowicki K, Zieliñski A (2006) Eletrokhim 42:611 (English translation: Russian J Electrochem 42:546)

    Google Scholar 

  20. Smulko J (2006) Fluct Noise Lett 6:R1

    Article  Google Scholar 

  21. Kish LB, Vajtai R, Granqvist CG (2000) Sens Actuators 71:55

    Article  Google Scholar 

  22. Hoel A, Ederth J, Kopniczky J, Heszler P, Kish LB, Olsson E, Granqvist CG (2002) Smart Mater Struct 11:640

    Article  CAS  Google Scholar 

  23. Ederth J, Smulko JM, Kish LB, Heszler P, Granqvist CG (2006) Sens Actuators 113:310

    Article  Google Scholar 

  24. Azens A, Kullman L, Granqvist CG (2003) Solar Energy Mater Solar Cells 76:147

    Article  CAS  Google Scholar 

  25. Azens A, Gustavsson G, Karmhag R, Granqvist CG (2003) Solid State Ionics 165:1

    Article  CAS  Google Scholar 

  26. Thangadurai V, Weppner W (2002) Mater Res Bull 37:2417

    Article  CAS  Google Scholar 

  27. Thangadurai V, Weppner W (2004) J Electrochem Soc 151:H1

    Article  CAS  Google Scholar 

  28. Avendaño E, Azens A, Niklasson GA, Granqvist CG (2004) Solar Energy Mater Solar Cells 84:337

    Article  Google Scholar 

  29. Bendat JS, Piersol AG (1999) Random data analysis and measurement procedures. Wiley, New York

    Google Scholar 

  30. Hooge FN (1969) Phys Lett A 29:139

    Article  Google Scholar 

  31. Kiss LB, Kleinpenning TGM (1987) Physica B 145:185

    Article  Google Scholar 

  32. Brophy JJ (1987) J Appl Phys 61:2

    Article  Google Scholar 

  33. Hooge FN, Kleinpenning TGM, Vandamme LKJ (1981) Rep Prog Phys 44:31

    Article  Google Scholar 

  34. Weissman MB (1988) Rev Mod Phys 60:537

    Article  CAS  Google Scholar 

  35. Kiss LB, Hajdu J (1989) Solid State Commun 72:799

    Article  Google Scholar 

Download references

Acknowledgment

J. Smulko’s research at the Uppsala University was supported by the Swedish Foundation for International Cooperation in Research and Higher Education via a STINT short-term stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Granqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smulko, J., Azens, A., Kish, L.B. et al. Quality assessments of electrochromic devices: the possible use of 1/f current noise. Ionics 13, 179–182 (2007). https://doi.org/10.1007/s11581-007-0088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0088-9

Keywords

Navigation