Skip to main content
Log in

Robust working memory in a two-dimensional continuous attractor network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Continuous bump attractor networks (CANs) have been widely used in the past to explain the phenomenology of working memory (WM) tasks in which continuous-valued information has to be maintained to guide future behavior. Standard CAN models suffer from two major limitations: the stereotyped shape of the bump attractor does not reflect differences in the representational quality of WM items and the recurrent connections within the network require a biologically unrealistic level of fine tuning. We address both challenges in a two-dimensional (2D) network model formalized by two coupled neural field equations of Amari type. It combines the lateral-inhibition-type connectivity of classical CANs with a locally balanced excitatory and inhibitory feedback loop. We first use a radially symmetric connectivity to analyze the existence, stability and bifurcation structure of 2D bumps representing the conjunctive WM of two input dimensions. To address the quality of WM content, we show in model simulations that the bump amplitude reflects the temporal integration of bottom-up and top-down evidence for a specific combination of input features. This includes the network capacity to transform a stable subthreshold memory trace of a weak input into a high fidelity memory representation by an unspecific cue given retrospectively during WM maintenance. To address the fine-tuning problem, we test numerically different perturbations of the assumed radial symmetry of the connectivity function including random spatial fluctuations in the connection strength. Different to the behavior of standard CAN models, the bump does not drift in representational space but remains stationary at the input position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27(2):77–87

    Article  CAS  PubMed  Google Scholar 

  • Avitabile D (2016) Numerical computation of coherent structures in spatially-extended systems. Second International Conference on Mathematical Neuroscience, Antibes Juan-les-Pins, 2016

  • Barak O, Tsodyks M (2014) Working models of working memory. Curr Opin Neurobiol 25:20–24

    Article  CAS  PubMed  Google Scholar 

  • Barbosa J, Stein H, Martinez RL et al. (2020) Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nat Neurosci 23(8):1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergström F, Eriksson J (2018) Neural evidence for non-conscious working memory. Cereb Cortex 28(9):3217–3228

    Article  PubMed  Google Scholar 

  • Bressloff PC (2012) Spatiotemporal dynamics of continuum neural fields. J Phys A Math Theor 45(3):033001

    Article  Google Scholar 

  • Bressloff PC, Coombes S (2013) Neural bubble dynamics revisited. Cognit Comput 5(3):281–294

    Article  PubMed  PubMed Central  Google Scholar 

  • Bressloff PC, Wilkerson J (2012) Traveling pulses in a stochastic neural field model of direction selectivity. Front Comput Neurosci 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol 13(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Camperi M, Wang XJ (1998) A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J Comput Neurosci 5(4):383–405

    Article  CAS  PubMed  Google Scholar 

  • Constantinidis C, Wang XJ (2004) A neural circuit basis for spatial working memory. Neuroscientist 10(6):553–565

    Article  PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci 4(3):311–316

    Article  CAS  PubMed  Google Scholar 

  • Drucker DM, Kerr WT, Aguirre GK (2009) Distinguishing conjoint and independent neural tuning for stimulus features with FMRI adaptation. J Neurophysiol 101(6):3310–3324

    Article  PubMed  PubMed Central  Google Scholar 

  • Erlhagen W, Bicho E (2006) The dynamic neural field approach to cognitive robotics. J Neural Eng 3(3):R36

    Article  PubMed  Google Scholar 

  • Ferreira F, Wojtak W, Sousa E et al. (2020) Rapid learning of complex sequences with time constraints: a dynamic neural field model. IEEE Trans Cogn Develop Syst 13(4):853–864

    Article  Google Scholar 

  • Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16(2):129–135

    Article  PubMed  Google Scholar 

  • Itskov V, Hansel D, Tsodyks M (2011) Short-term facilitation may stabilize parametric working memory trace. Front Comput Neurosci 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JS, Spencer JP, Schöner G (2008) Moving to higher ground: the dynamic field theory and the dynamics of visual cognition. New Ideas Psychol 26(2):227–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JS, Spencer JP, Luck SJ et al. (2009) A dynamic neural field model of visual working memory and change detection. Psychol Sci 20(5):568–577

    Article  PubMed  Google Scholar 

  • Khona M, Fiete IR (2021) Attractor and integrator networks in the brain. arXiv preprint arXiv:2112.03978

  • Kilpatrick ZP, Ermentrout B (2013) Wandering bumps in stochastic neural fields. SIAM J Appl Dyn Syst 12(1):61–94

    Article  Google Scholar 

  • Klyszejko Z, Rahmati M, Curtis CE (2014) Attentional priority determines working memory precision. Vision Res 105:70–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Koulakov AA, Raghavachari S, Kepecs A et al. (2002) Model for a robust neural integrator. Nat Neurosci 5(8):775–782

    Article  CAS  PubMed  Google Scholar 

  • Lewis-Peacock JA, Drysdale AT, Oberauer K et al. (2012) Neural evidence for a distinction between short-term memory and the focus of attention. J Cogn Neurosci 24(1):61–79

    Article  PubMed  Google Scholar 

  • Lim S, Goldman MS (2013) Balanced cortical microcircuitry for maintaining information in working memory. Nat Neurosci 16(9):1306–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma WJ, Husain M, Bays PM (2014) Changing concepts of working memory. Nat Neurosci 17(3):347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mégardon G, Tandonnet C, Sumner P et al. (2015) Limitations of short range Mexican hat connection for driving target selection in a 2d neural field: activity suppression and deviation from input stimuli. Front Comput Neurosci 9:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319(5869):1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Pina JE, Bodner M, Ermentrout B (2018) Oscillations in working memory and neural binding: a mechanism for multiple memories and their interactions. PLoS Comput Biol 14(11):e1006517

    Article  PubMed  PubMed Central  Google Scholar 

  • Rankin J, Avitabile D, Baladron J et al. (2014) Continuation of localized coherent structures in nonlocal neural field equations. SIAM J Sci Comput 36(1):B70–B93

    Article  Google Scholar 

  • Renart A, Song P, Wang XJ (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38(3):473–485

    Article  CAS  PubMed  Google Scholar 

  • Rose NS, LaRocque JJ, Riggall AC et al. (2016) Reactivation of latent working memories with transcranial magnetic stimulation. Science 354(6316):1136–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux F, Uhlhaas PJ (2014) Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci 18(1):16–25

    Article  PubMed  Google Scholar 

  • Rubin JE, Troy WC (2004) Sustained spatial patterns of activity in neuronal populations without recurrent excitation. SIAM J Appl Math 64(5):1609–1635

    Article  Google Scholar 

  • Schneegans S, Bays PM (2017) Restoration of fMRI decodability does not imply latent working memory states. J Cogn Neurosci 29(12):1977–1994

    Article  PubMed  PubMed Central  Google Scholar 

  • Schöner G, Spencer JP (2016) Dynamic thinking: a primer on dynamic field theory. Oxford University Press

    Google Scholar 

  • Scotti PS, Hong Y, Leber AB et al. (2021) Visual working memory items drift apart due to active, not passive, maintenance. J Exp Psychol Gen 150(12):2506

    Article  PubMed  PubMed Central  Google Scholar 

  • Sergent C, Wyart V, Babo-Rebelo M et al. (2013) Cueing attention after the stimulus is gone can retrospectively trigger conscious perception. Curr Biol 23(2):150–155

    Article  CAS  PubMed  Google Scholar 

  • Stokes MG (2015) Activity-silent working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn Sci 19(7):394–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutterer DW, Foster JJ, Adam KC et al. (2019) Item-specific delay activity demonstrates concurrent storage of multiple active neural representations in working memory. PLoS Biol 17(4):e3000239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Sagi D (1998) A perceptual memory for low-contrast visual signals. Proc Natl Acad Sci 95(21):12729–12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ursino M, Cesaretti N, Pirazzini G (2023) A model of working memory for encoding multiple items and ordered sequences exploiting the theta-gamma code. Cogn Neurodyn 17:489–521

    Article  PubMed  Google Scholar 

  • Wildegger T, Humphreys G, Nobre AC (2016) Retrospective attention interacts with stimulus strength to shape working memory performance. PloS One 11(10):e0164174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wimmer K, Nykamp DQ, Constantinidis C et al. (2014) Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat Neurosci 17(3):431–439

    Article  CAS  PubMed  Google Scholar 

  • Wojtak W, Ferreira F, Bicho E, et al. (2019) Neural field model for measuring and reproducing time intervals. In: International conference on artificial neural networks, Springer, pp 327–338

  • Wojtak W, Coombes S, Avitabile D et al. (2021) A dynamic neural field model of continuous input integration. Biol Cybern 115(5):451–471

    Article  PubMed  Google Scholar 

  • Wojtak W, Ferreira F, Vicente P et al. (2021) A neural integrator model for planning and value-based decision making of a robotics assistant. Neural Comput Appl 33(8):3737–3756

    Article  Google Scholar 

  • Wu S, Hamaguchi K, Si Amari (2008) Dynamics and computation of continuous attractors. Neural Comput 20(4):994–1025

    Article  PubMed  Google Scholar 

  • Xie X, Giese MA (2002) Nonlinear dynamics of direction-selective recurrent neural media. Phys Rev E 65(5):051904

    Article  Google Scholar 

  • Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci 16(6):2112–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Ji Z, Liu X, et al. (2017) Learning a continuous attractor neural network from real images. In: International conference on neural information processing, Springer, pp 622–631

  • Zylberberg J, Strowbridge BW (2017) Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory. Annu Rev Neurosci 40:603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work received financial support from FCT through the PhD fellowship PD/BD/128183/2016, the project “Neurofield” (PTDC/MAT-APL/31393/2017), the Project I-CATER: Intelligent robotic Coworker Assistant for industrial Tasks with an Ergonomics Rationale (Refª PTDC/EEI-ROB/3488/20211), R&D Units Project Scope: UIDB/00319/2020” - ALGORITMI Research Centre and the Research Centre CMAT within the project UID/MAT/00013/2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weronika Wojtak or Wolfram Erlhagen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The double integral in (5) can be calculated using the Fourier transforms and Bessel function identities (Bressloff 2012). We start with expressing w(r) as a 2D Fourier transform using polar coordinates

$$\begin{aligned}{} & {} w(r) = \frac{1}{2\pi } \int _{{\mathbb {R}}^{2}} \textrm{e}^{i{\textbf {r}}\cdot {\textbf {k}}}\widehat{w} ({\textbf {k}}) \textrm{d} {\textbf {k}}\nonumber \\{} & {} \quad = \frac{1}{2\pi } \int _{0}^{\infty } \left( \int _{0}^{2\pi }\textrm{e}^{ir\rho \cos \phi } \widehat{w} (\rho ) \textrm{d} \phi \right) \rho \textrm{d} \rho , \end{aligned}$$
(14)

where \(\widehat{w}\) denotes the Fourier transform of w and \({\textbf {k}} = (\rho ,\phi )\). Using the integral representation

$$\begin{aligned} \frac{1}{2\pi } \int _{0}^{2\pi }\textrm{e}^{ir \rho \cos \phi } \textrm{d} \phi = J_{0}(\rho r), \end{aligned}$$
(15)

where \(J_{0}\) is the Bessel function of the first kind, we express w in terms of its Hankel transform of order zero

$$\begin{aligned} w(r) = \int _{0}^{\infty } \widehat{w} (\rho ) J_{0}(\rho r) \rho \textrm{d} \rho , \end{aligned}$$
(16)

which, when substituted into (5), gives

$$U(r) = V(r) + \int_{0}^{{2\pi }} {\int_{0}^{R} {\left( {\int_{0}^{\infty } {\hat{w}} (\rho )J_{0} (\rho |{\mathbf{r}} - {\mathbf{r}}^{\prime } |)\rho {\text{d}}\rho } \right)r^{\prime}{\text{d}}r^{\prime}{\text{d}}\zeta ^{\prime},} } $$
(17a)
$$V(r) = U(r) - \int_{0}^{{2\pi }} {\int_{0}^{R} {\left( {\int_{0}^{\infty } {\hat{w}} (\rho )J_{0} (\rho |{\mathbf{r}} - {\mathbf{r}}^{\prime } |)\rho {\text{d}}\rho } \right)r^{\prime}{\text{d}}r^{\prime}{\text{d}}\zeta ^{\prime}.} } $$
(17b)

We reverse the order of integration and use the addition theorem

$$\begin{aligned}{} & {} J_{0}(\rho \sqrt{r^{2}+r'^{2}-2rr'\cos \zeta '})\nonumber \\{} & {} \quad =\sum ^{\infty }_{m=0} \epsilon _{m}J_{m}(\rho r)J_{m}(\rho r')\cos m \zeta ', \end{aligned}$$
(18)

where \(\epsilon _{0} = 1\) and \(\epsilon _{n} = 2\) for \(n \ge 1\). Then using the identity \(J_{1}(\rho R)R = \rho \int _{0}^{R}J_{0}(\rho r')r' \textrm{d}r'\), we obtain (6). Note that the Fourier transform of (4) is easily calculated using the result that the Fourier transform of \(K_0 \left( \dfrac{r}{\sigma } \right) = \dfrac{ 2\pi }{r^2 + \sigma ^2}\).

Appendix B

Using polar coordinates we can rewrite system (8) as

$$\begin{aligned} \begin{aligned}&\lambda \psi (r,\phi )= - \psi (r,\phi )+ \zeta (r,\phi ) \\&\quad + \int _{0}^{2\pi }\textrm{d}\phi ' \int _{0}^{\infty } r'\textrm{d}r' \\&\quad w(\sqrt{r^{2}+r'^{2}-2rr'\cos \phi })\delta (U(r')-\theta ) \psi (r',\phi -\phi '), \end{aligned} \end{aligned}$$
(19a)
$$\begin{aligned} \begin{aligned}&\lambda \zeta (r,\phi )= - \zeta (r,\phi )+ \psi (r,\phi ) \\ {}&\quad - \int _{0}^{2\pi }\textrm{d}\phi ' \int _{0}^{\infty } r'\textrm{d}r'\\&\quad w(\sqrt{r^{2}+r'^{2}-2rr'\cos \phi })\delta (U(r')-\theta ) \psi (r',\phi -\phi '). \end{aligned} \end{aligned}$$
(19b)

We look for solutions of the form

$$\begin{aligned} (\psi (r,\phi ), \zeta (r,\phi ) ) = \textrm{e}^{in\phi } (\psi (r), \zeta (r)), \end{aligned}$$
(20)

where n is the number of modes of the boundary perturbation. System (19) then takes the form

$$\begin{aligned} \begin{aligned}&\lambda \psi (r) \textrm{e}^{in\phi } = - \psi (r)\textrm{e}^{in\phi }+ \zeta (r)\textrm{e}^{in\phi } \\ {}&\quad + \int _{0}^{2\pi }\textrm{d}\phi ' \int _{0}^{\infty } r'\textrm{d}r'\\&\quad w(\sqrt{r^{2}+r'^{2}-2rr'\cos (\phi -\phi ')})\delta (U(r')-\theta ) \psi (r')\textrm{e}^{in(\phi -\phi ')}, \end{aligned} \end{aligned}$$
(21a)
$$\begin{aligned} \begin{aligned}&\lambda \zeta (r) \textrm{e}^{in\phi } = - \zeta (r)\textrm{e}^{in\phi }+ \psi (r)\textrm{e}^{in\phi } \\ {}&\quad - \int _{0}^{2\pi }\textrm{d}\phi ' \int _{0}^{\infty } r'\textrm{d}r'\\&\quad w(\sqrt{r^{2}+r'^{2}-2rr'\cos (\phi -\phi ')})\delta (U(r')-\theta ) \psi (r')\textrm{e}^{in(\phi -\phi ')}. \end{aligned} \end{aligned}$$
(21b)

We set \(r=R\) and after dividing both sides by \(\textrm{e}^{in\phi }\) we get

$$\begin{aligned} \begin{aligned} \lambda \psi (R)&= - \psi (R)+ \zeta (R) \\ {}&+ \int _{0}^{2\pi }\textrm{d}\phi R w(R\sqrt{2-2\cos \phi }))\frac{\psi (R)\textrm{e}^{-in\phi }}{|U'(R) |}, \end{aligned} \end{aligned}$$
(22a)
$$\begin{aligned} \begin{aligned} \lambda \zeta (R)&= - \zeta (R)+ \psi (R) \\ {}&- \int _{0}^{2\pi }\textrm{d}\phi R w(R\sqrt{2-2\cos \phi }))\frac{\psi (R)\textrm{e}^{-in\phi }}{|U'(R) |}. \end{aligned} \end{aligned}$$
(22b)

The system (22) can be written as

$$\begin{aligned} A \begin{bmatrix} \psi (R) \\ \zeta (R) \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \end{bmatrix}, \end{aligned}$$

where the matrix A is given by

$$\begin{aligned} A = \begin{bmatrix} \lambda +1-S_{n} &{} -1 \\ -1+S_{n} &{} \lambda +1 \\ \end{bmatrix}, \end{aligned}$$

with

$$\begin{aligned} S_{n} = \frac{R}{|U'(R) |}\int _{0}^{2\pi } w(R\sqrt{2-2\cos \phi })\textrm{e}^{-in\phi }\textrm{d}\phi . \end{aligned}$$
(23)

Then, we find that

$$\begin{aligned} (\lambda +1+S_{n})(\lambda +1)-(-1+S_{n})(-1+S_{n})=0. \end{aligned}$$
(24)

Hence the eigenvalues of A are

$$\begin{aligned}{} & {} \lambda _{-1}= 0, \end{aligned}$$
(25)
$$\begin{aligned}{} & {} \lambda _{n}= -2+S_{n}. \end{aligned}$$
(26)

Note that \(\lambda _{n}\) is real, since after setting \(\sqrt{2-2\cos \phi } = 2\sin \left( \frac{\phi }{2}\right)\) and rescaling \(\phi\) we have

$$\begin{aligned} \text {Im}\{\lambda _{n}\}= -\frac{2R}{|U'(R) |}\int _{0}^{\pi } w(2R\sin (\phi ))\sin (2n\phi )\textrm{d}\phi = 0, \end{aligned}$$
(27)

i.e., the integrand is odd-symmetric about \(\frac{\pi }{2}\). Hence,

$$\begin{aligned}{} & {} \lambda _{n}= \text {Re}\{\lambda _{n}\} = -2+ \frac{R}{|U'(R) |} \nonumber \\{} & {} \quad \int _{0}^{2\pi } w(2R\sin (\phi /2))\cos (n\phi )\textrm{d}\phi , \end{aligned}$$
(28)

with the integrand even-symmetric about \(\frac{\pi }{2}\).

We then evaluate the integral in (28) using Bessel functions

$$\begin{aligned} & \int_{0}^{{2\pi }} w (2R\sin (\phi ^{\prime}/2))\cos (n\phi ^{\prime}){\text{d}}\phi ^{\prime} \\ & = \int_{0}^{{2\pi }} {\left( {\int_{0}^{\infty } {\hat{w}} (\rho )J_{0} (\rho (2R\sin (\phi ^{\prime}/2)))\rho {\text{d}}\rho } \right)} \cos \phi ^{\prime}{\text{d}}\phi ^{\prime} \\ & = 2\pi \int_{0}^{\infty } {\hat{w}} (\rho )J_{n} (\rho R)J_{n} (\rho R)\rho {\text{d}}\rho . \\ \end{aligned}$$
(29)

We differentiate (6a) with respect to r, and, knowing that \(U(r)+V(r)=K\) we have

$$\begin{aligned} U'(R) = - \pi R \int _{0}^{\infty } \widehat{w} (\rho ) J_{1}(\rho R) J_{1}(\rho R)\rho \textrm{d} \rho . \end{aligned}$$
(30)

We can now write the eigenvalues of A as (9) and (10).

Appendix C

Numerical simulations of the model were done in MATLAB using a forward Euler method with uniform spatial mesh with \(\textrm{dx}=0.05\) and time step \(\textrm{dt}=0.01\). To compute the two-dimensional spatial convolution of w and f we employ a two-dimensional fast Fourier transform (2D FFT), using MATLAB’s in-built functions fft2 and ifft2 to perform the Fourier transform and the inverse Fourier transform, respectively. Periodic boundary conditions are used. By choosing a sufficiently large domain size, we make sure that the localized patterns evolve sufficiently far from the boundaries.

For performing numerical continuation, we use the method described in (Rankin et al. 2014) and adapt MATLAB code available in (Avitabile 2016). The main advantage of this method is that it can be applied directly to the full integral model. This is possible due to the usage of Newton-GMRES solvers combined with a fast Fourier transform (FFT) employed for computing the convolution term (Rankin et al. 2014).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojtak, W., Coombes, S., Avitabile, D. et al. Robust working memory in a two-dimensional continuous attractor network. Cogn Neurodyn (2023). https://doi.org/10.1007/s11571-023-09979-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11571-023-09979-3

Keywords

Navigation