Skip to main content
Log in

Forward shift from reverse replay

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In a recent experimental paper Lee et al. (Neuron 51:639–650, 2006) showed that the firing patterns of CA1 complex-spike neurons gradually shifted forward across trials toward prospective goal locations within a recording session over multiple trials. Here we propose a simple model of this result based on the phenomenon of awake sequence reverse replay (Foster and Wilson, Nature 440(7084):615–617, 2006) which occurs when the animal pauses at the reward location. The model is based on the CA3-CA1 anatomy with modulation of CA3-CA1 synaptic plasticity by feedback from CA3 projecting CA1 interneurons. Sequence replays, which are generated in CA3 by removal of subcortical inhibition on CA1 interneurons, are recoded into the synaptic weights of individual CA1 cells. This produces spatially extended CA1 firing fields, whose response provides a value function on experienced paths toward goal locations. Simulations show that the CA1 firing fields show positive movement in center of mass toward reward locations over many trials with negative shift in first few trials, and development of positive skew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MI, Jeffery KJ (2003) Heterogeneous modulation of place cell firing by changes in context. J Neurosci 23:8827–8835

    PubMed  CAS  Google Scholar 

  • Baker JL, Olds JL (2007) Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cogn Neurodyn 1:237–248

    Google Scholar 

  • Behrens CJ, van den Boom LP, de Hoz L, Friedman A, Heinemann U (2005) Induction of sharp wave ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8:1560

    Google Scholar 

  • Bikbaev A, Manahan-Vaughan D (2008) Relationship of hippocampal theta and gamma oscillations to potentiation of synaptic transmission. Frontiers in neuroscience 2: 57

  • Bower MR, Euston DR, and McNaughton BL (2005) Sequential- context-dependent hippocampal activity is not necessary to learn sequences with repeated elements. J Neurosci 25:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Breese CR, Hampson RE, Deadwyler SA (1989) Hippocampal place cells: stereotypy and plasticity. J Neurosci 9:1097–1111

    PubMed  CAS  Google Scholar 

  • Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy" brain states. Neuroscience 31:551–570

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Chrobak JJ (2005) Synaptic plasticity and self-organization in the hippocampus. Nat Neurosci 8:1418

    Google Scholar 

  • Dunwiddie T, Lynch G (1978) Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol 276:353–367

    PubMed  CAS  Google Scholar 

  • Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 1:41–50

    Article  PubMed  CAS  Google Scholar 

  • Ferbinteanu J, Shapiro ML (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440(7084):615–617

    Article  Google Scholar 

  • Foster DJ, Wilson MA (2007) Hippocampal theta sequences. Hippocampus 17(11):1093–1099

    Article  PubMed  Google Scholar 

  • Freund T, Antal M (1998) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173

    Article  Google Scholar 

  • Freund T, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Fyhn M, Molden S, Hollup S, Moser MB, Moser E (2002) Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35:555–566

    Article  PubMed  CAS  Google Scholar 

  • Gothard KM, Skaggs WE, Moore KM, McNaughton BL (1996) Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J Neurosci 16:823–835

    PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801

    Article  PubMed  CAS  Google Scholar 

  • Jensen O, Lisman JE (1996) Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning & Memory 3:279–287

    Google Scholar 

  • Johnston D, Amaral DG (1998) Hippocampus. In: Shepard GM (ed) The synaptic organization of the brain. Oxford University Press, New York, pp 417–458

    Google Scholar 

  • Kamondi A, Acsady L, Wang X-J, Buzsaki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8:244–261

    Google Scholar 

  • Kobayashi T, Nishijo H, Fukuda M, Bures J, Ono T (1997) Task dependent representations in rat hippocampal place neurons. J Neurophysiol 78:597–613

    PubMed  CAS  Google Scholar 

  • Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430:456–459

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Griffin AL, Zilli EA, Eichenbaum H, Hasselmo ME (2006) Gradual translocation of spatial correlates of neuronal firing in the hippocampus toward prospective reward locations. Neuron 51:639–650

    Article  PubMed  CAS  Google Scholar 

  • Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI (2004) Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305:1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE (1999) Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22:233–242

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Otmakhova NA (2001) Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11:551–568

    Google Scholar 

  • Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA (1995) Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J Neurosci 15:7079–7094

    PubMed  CAS  Google Scholar 

  • McClelland JL (1998) Complementary learning systems in the brain. A connectionist approach to explicit and implicit cognition and memory. Ann N Y Acad Sci 843:153–169

    Article  PubMed  CAS  Google Scholar 

  • Oliveira LA, Gentil CG, Covian MR (1990) Role of the septal area in feeding behavior elicited by electrical stimulation of the lateral hypothalamus of the rat. Braz J Med Biol Res 23:49–58

    PubMed  CAS  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  • Ponzi A (2006a) Dynamical system model of spatial reward learning. IEICE Tech Rep 103(163):19–24

    Google Scholar 

  • Ponzi A (2006b) Simple model of hippocampal splitter cells, Japan neural network society (JNNS 2006) abstract.

  • Ponzi A (2007) Model of balance of excitation and inhibition in hippocampal sharp wave replays and application to spatial remapping. IJCNN 2007, IEEE press, pp 2373–2378.

  • Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following exposure to nicotine or chocolate. Neuroscience 105:535–545

    Article  PubMed  CAS  Google Scholar 

  • Sik A, Minen A, Penttonen M, Buzsaki G (1994) Inhibitory CA1-CA3-hilar region feedback in the hippocampus. Science 265:1722–1724

    Article  PubMed  CAS  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    Google Scholar 

  • Somoyogi P, Klausberger T (2005) Defined types of cortical interneurone structure space and time in the hippocampus. J Physiol 562(1):9–26

    Article  Google Scholar 

  • Stanley BG, Lanthier D, Leibowitz SF (1988) Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study. Pharmacol Biochem Behav 31:825–832

    Article  PubMed  CAS  Google Scholar 

  • Wallenstein GV, Hasselmo ME (1997) GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J Neurophysiol 78:393–408

    PubMed  CAS  Google Scholar 

  • Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–633

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ponzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponzi, A. Forward shift from reverse replay. Cogn Neurodyn 3, 39–46 (2009). https://doi.org/10.1007/s11571-008-9068-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-008-9068-7

Keywords

Navigation