Skip to main content
Log in

Fetale Programmierung und spätere Nierenfunktionsstörungen nach intrauteriner Wachstumsrestriktion

Fetal programming and later renal malfunction after intrauterine growth restriction

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Große epidemiologische Untersuchungen lassen auf einen klaren Zusammenhang zwischen niedrigem Geburtsgewicht und gestörter Nierenentwicklung schließen, deren Konsequenzen sich teilweise bereits im Kindesalter bemerkbar machen. Dies betrifft sowohl die chronische Niereninsuffizienz wie v.a. auch entzündliche glomeruläre Erkrankungen. Einer der wichtigsten Mechanismen scheint die Reduktion der Nephronenzahl zu sein, wenn auch weitere Mechanismen der fetalen Programmierung zunehmend aufgeklärt werden. In den letzten Jahren mehren sich die Indizien, dass die gestörte fetale Programmierung durch postnatale Interventionen wie die Vermeidung von Hyperalimentation zumindest teilweise revidiert werden kann. Ob diese Interventionen möglicherweise auch den aggravierten Verlauf von Nierenerkrankungen nach niedrigem Geburtsgewicht positiv beeinflussen kann, muss abgewartet werden.

Abstract

Large epidemiological studies suggest that a clear relationship exists between low birth weight and adverse renal outcomes, which may begin as early as childhood. Such outcomes include renal failure as well as glomerular disease. One of the most important mechanisms is a reduction in the number of nephrons, although further mechanisms of fetal programming must also be considered. It appears likely that fetal programming may be altered postnatally, such as by avoiding hyperalimentation. Whether such interventions could potentially alter the adverse course of renal disease after a small-for-gestational-age birth remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Alexander BT, Hendon AE, Ferril G, Dwyer TM (2005) Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45:754–758

    Article  CAS  PubMed  Google Scholar 

  2. Argueso LR, Ritchey ML, Boyle ET Jr et al (1992) Prognosis of patients with unilateral renal agenesis. Pediatr Nephrol 6:412–416

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Shlomo Y, McCarthy A, Hughes R et al (2008) Immediate postnatal growth is associated with blood pressure in young adulthood: The barry caerphilly growth study. Hypertension 52:638–644

    Article  CAS  PubMed  Google Scholar 

  4. Bertram C, Trowern AR, Copin N et al (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: Potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142:2841–2853

    Article  CAS  PubMed  Google Scholar 

  5. Bogdarina I, Welham S, King PJ et al (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  CAS  PubMed  Google Scholar 

  6. Boudville N, Prasad GV, Knoll G et al (2006) Donor Nephrectomy Outcomes Research (DONOR) Network. Meta-analysis: Risk for hypertension in living kidney donors. Ann Intern Med 145(3):185–196

    PubMed  Google Scholar 

  7. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure: Less of one, more of the other? Am J Hypertens 1:335–347

    CAS  PubMed  Google Scholar 

  8. Brenner BM, Milford EL (1993) Nephron underdosing: A programmed cause of chronic renal allograft failure. Am J Kidney Dis 21(5 Suppl 2):66–72

    CAS  PubMed  Google Scholar 

  9. Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int 49:1774–1777

    Article  CAS  PubMed  Google Scholar 

  10. Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124–S127

    CAS  PubMed  Google Scholar 

  11. Cullen-McEwen LA, Kett MM, Dowling J et al (2003) Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41:335–340

    Article  CAS  PubMed  Google Scholar 

  12. Dötsch J, Dittrich K, Plank C, Rascher W (2006) Is tacrolimus for childhood steroid-dependent nephrotic syndrome better than ciclosporin A? Nephrol Dial Transplant 21:1761–1763

    Article  PubMed  Google Scholar 

  13. Douverny JB, Baptista-Silva JC, Pestana JO, Sesso R (2007) Importance of renal mass on graft function outcome after 12 months of living donor kidney transplantation. Nephrol Dial Transplant 22:3646–3651

    Article  PubMed  Google Scholar 

  14. Elmes MJ, Gardner DS, Langley-Evans SC (2007) Fetal exposure to a maternal low-protein diet is associated with altered left ventricular pressure response to ischemia-reperfusion injury. Br J Nutr 98:93–100

    Article  CAS  PubMed  Google Scholar 

  15. Fogo A, Ichikawa I (1991) Evidence for a pathogenetic link between glomerular hypertrophy and sclerosis. Am J Kidney Dis 17:666–669

    CAS  PubMed  Google Scholar 

  16. Franco MC, Christofalo DM, Sawaya AL et al (2006) Effects of low birth weight in 8- to 13-year-old children: Implications in endothelial function and uric acid levels. Hypertension 48:45–50

    Article  CAS  PubMed  Google Scholar 

  17. Franco MC, Nishida SK, Sesso R (2008) GFR estimated from cystatin C versus creatinine in children born small for gestational age. Am J Kidney Dis 51:925–932

    Article  CAS  PubMed  Google Scholar 

  18. Goldstein AR, White RH, Akuse R, Chantler C (1992) Long-term follow-up of childhood Henoch-Schönlein nephritis. Lancet 339:280–282

    Article  CAS  PubMed  Google Scholar 

  19. Hallan S, Euser AM, Irgens LM et al (2008) Effect of intrauterine growth restriction on kidney function at young adult age: The Nord Trøndelag Health [HUNT 2] Study. Am J Kidney Dis 51:10–20

    Article  PubMed  Google Scholar 

  20. Hoy WE, Bertram JF, Denton RD et al (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265

    Article  PubMed  Google Scholar 

  21. Hughson M, Farris AB 3rd, Douglas-Denton R et al (2003) Glomerular number and size in autopsy kidneys: The relationship to birthweight. Kidney Int 63:2113–2122

    Article  PubMed  Google Scholar 

  22. Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678

    Article  CAS  PubMed  Google Scholar 

  23. Ingelfinger JR (2003) Is microanatomy destiny? N Engl J Med 348:99–100

    Article  PubMed  Google Scholar 

  24. Keller G, Zimmer G, Mall G et al (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Article  PubMed  Google Scholar 

  25. Koleganova N, Piecha G, Ritz E (2009) Prenatal causes of kidney disease. Blood Purif 27:48–52

    Article  CAS  PubMed  Google Scholar 

  26. Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: Cellular and molecular regulation. Mech Dev 92:31–45

    Article  CAS  PubMed  Google Scholar 

  27. Lackland DT, Bendall HE, Osmond C et al (2000) Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med 160:1472–1476

    Article  CAS  PubMed  Google Scholar 

  28. Lackland DT, Egan BM, Fan ZJ, Syddall HE (2001) Low birth weight contributes to the excess prevalence of end-stage renal disease in African Americans. J Clin Hypertens (Greenwich) 3:29–31

    Google Scholar 

  29. Langley-Evans SC, Sherman RC, Welham SJ et al (1999) Intrauterine programming of hypertension: The role of the renin-angiotensin system. Biochem Soc Trans 27:88–93

    CAS  PubMed  Google Scholar 

  30. Li S, Chen SC, Shlipak M et al (2008) Kidney early evaluation program investigators. Low birth weight is associated with chronic kidney disease only in men. Kidney Int 73:637–642

    Article  CAS  PubMed  Google Scholar 

  31. López-Bermejo A, Sitjar C, Cabacas A et al (2008) Prenatal programming of renal function: The estimated glomerular filtration rate is influenced by size at birth in apparently healthy children. Pediatr Res 64:97–99

    Article  PubMed  Google Scholar 

  32. Martin H, Gazelius B, Norman M (2000) Impaired acetylcholine-induced vascular relaxation in low birth weight infants: Implications for adult hypertension? Pediatr Res 47:457–462

    Article  CAS  PubMed  Google Scholar 

  33. Martin H, Hu J, Gennser G, Norman M (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birth weight. Circulation 102:2739–2744

    CAS  PubMed  Google Scholar 

  34. Mei-Zahav M, Korzets Z, Cohen I et al (2001) Ambulatory blood pressure monitoring in children with a solitary kidney - a comparison between unilateral renal agenesis and uninephrectomy. Blood Press Monit 6:263–267

    Article  CAS  PubMed  Google Scholar 

  35. Moritz KM, Wintour EM, Dodic M (2002) Fetal uninephrectomy leads to postnatal hypertension and compromised renal function. Hypertension 39:1071–1076

    Article  CAS  PubMed  Google Scholar 

  36. Nüsken KD, Dötsch J, Rauh M et al (2008) Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: Impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation. Endocrinology 149:1056–1063

    Article  PubMed  Google Scholar 

  37. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: Evidence from human studies and experimental animal models. Clin Sci (Lond) 114:1–17

    Google Scholar 

  38. Phillips DI, Barker DJ (1997) Association between low birth weight and high resting pulse in adult life: Is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabet Med 14:673–677

    Article  CAS  PubMed  Google Scholar 

  39. Plagemann A (2006) Perinatal nutrition and hormone-dependent programming of food intake. Horm Res 65(Suppl 3):83–89

    Article  CAS  PubMed  Google Scholar 

  40. Plank C, Östreicher I, Hartner A et al (2006) Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int 70:1974–1982

    CAS  PubMed  Google Scholar 

  41. Plank C, Östreicher I, Rascher W, Dötsch J (2007) Born SGA, but not postnatal weight gain aggravates the course of nephrotic syndrome in children. Pediatr Nephrol 22:1881–1889

    Article  PubMed  Google Scholar 

  42. Ravelli AC, van der Meulen JH, Michels RP et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  CAS  PubMed  Google Scholar 

  43. Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 104:607–614

    Google Scholar 

  44. Schoof E, Girstl M, Frobenius W et al (2001) Reduced placental gene expression of 11ß hydroxysteroid dehydogenase type 2 and 15-hydrodroxy prostaglandin dehydrogenase in patients with preeclampsia. J Clin Endocrinol Metab 86:1313–1317

    Google Scholar 

  45. Schreuder MF, Nauta J (2007) Prenatal programming of nephron number and blood pressure. Kidney Int 72:265–268

    Article  CAS  PubMed  Google Scholar 

  46. Seckl JR, Meaney MJ (2004) Glucocorticoid programming. Ann N Y Acad Sci 1032:63–84

    Article  CAS  PubMed  Google Scholar 

  47. Sheu JN, Chen JH (2001) Minimal change nephrotic syndrome in children with intrauterine growth retardation. Am J Kidney Dis 37:909–914

    Article  CAS  PubMed  Google Scholar 

  48. Shweta A, Cullen-McEwen LA, Kett MM et al (2008) Am J Physiol Renal Physiol [Epub ahead of print]

  49. Simonetti GD, Raio L, Surbek D et al (2008) Salt sensitivity of children with low birth weight. Hypertension 52:625–630

    Article  CAS  PubMed  Google Scholar 

  50. Singhal A, Cole TJ, Fewtrell M Kennedy K et al (2007) Promotion of faster weight gain in infants born small for gestational age: Is there an adverse effect on later blood pressure? Circulation 115:213–220

    Article  PubMed  Google Scholar 

  51. Stanner SA, Yudkin JS (2001) Fetal programming and the Leningrad Siege study. Twin Res Hum Genet 4:287–292

    Article  CAS  Google Scholar 

  52. Stoffers DA, Desai BM, DeLeon DD, Simmons RA (2003) Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 52:734–740

    Article  CAS  PubMed  Google Scholar 

  53. Struwe E, Berzl D, Schild RL et al (2007) Simultaneously reduced gene expression of cortisol-activating and cortisol-inactivating enzymes in placentas of small-for-gestational-age neonates. Am J Obstet Gynecol 197:43.e1–e6

    Article  PubMed  Google Scholar 

  54. Teeninga N, Schreuder MF, Bökenkamp A et al (2008) Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis. Nephrol Dial Transplant 23:1615–16120

    Article  PubMed  Google Scholar 

  55. Tzschoppe A, Struwe E, Blessing H et al (n d) Placental 11β-HSD2 gene expression at birth is inversely correlated with growth velocity in the first year of life after intrauterine growth restriction (IUGR). Pediatr Res (im Druck)

  56. Vikse BE, Irgens LM, Leivestad T et al (2008) Low birth weight increases risk for end-stage renal disease. 19:151–157

  57. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460–467

    Article  CAS  PubMed  Google Scholar 

  58. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: Role of nephrogenesis. Kidney Int 65:1339–1348

    Article  PubMed  Google Scholar 

  59. Zidar N, Avgustin Cavic M, Kenda RB, Ferluga D (1998) Unfavorable course of minimal change nephrotic syndrome in children with intrauterine growth retardation. Kidney Int 54:1320–1323

    Article  CAS  PubMed  Google Scholar 

  60. Zidar N, Cavic MA, Kenda RB et al (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79:28–32

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dötsch.

Additional information

Mit Unterstützung der DFG (SFB 423, B13 und Z2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dötsch, J., Plank, C. & Amann, K. Fetale Programmierung und spätere Nierenfunktionsstörungen nach intrauteriner Wachstumsrestriktion. Nephrologe 4, 306–311 (2009). https://doi.org/10.1007/s11560-008-0261-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-008-0261-9

Schlüsselwörter

Keywords

Navigation