Skip to main content
Log in

Differential effects of Paenibacillus spp. on cucumber mycorrhizas

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The effects of 17 Paenibacillus strains on root colonization by Glomus intraradices or Glomus mosseae and plant growth parameters (shoot and root weight) of mycorrhizal cucumber plants were examined. The Paenibacillus strains were originally isolated from mycorrhizal (G. intraradices) and non-mycorrhizal cucumber rhizosphere and/or hyphosphere, except for strain EJP73, which originated from a Pinus sylvestris-Lactarius rufus ectomycorrhiza. Root colonization of cucumber plants by G. intraradices or G. mosseae was unaffected by all seven strains of Paenibacillus polymyxa, but was decreased or increased by four strains of Paenibacillus macerans and strain EJP73 of Paenibacillus sp. Overall, shoot dry weight of cucumber grown in symbioses with either G intraradices or G. mosseae was unaffected by inoculation with all of the Paenibacillus strains, except for strain MB02-429 of P. macerans, which increased the shoot dry weight in the cucumber-G. mosseae symbiosis. On the other hand, several Paenibacillus strains caused altered root growth. Three strains of P. polymyxa and four strains of P. macerans increased the root fresh weight of the cucumber–G. intraradices symbiosis, whereas three strains of P. polymyxa and one strain of P. macerans as well as Paenibacillus sp. EJP73, decreased the root fresh weight of the cucumber–G. mosseae symbiosis. In conclusion, our results show that bacteria from several species of Paenibacillus differentially affect cucumber mycorrhizas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215 doi:10.1128/AEM.69.10.6208-6215.2003

    Article  PubMed  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria their potential for stimulating plant growth. Environ Microbiol 8:1–10 doi:10.1111/j.1462-2920.2005.00942.x

    Article  PubMed  CAS  Google Scholar 

  • Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD (2006a) Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541 doi:10.1007/s00572-006-0068-3

    Article  PubMed  Google Scholar 

  • Aspray TJ, Jones EE, Whipps JM, Bending GD (2006b) Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis. FEMS microbial Ecol 56:25–33

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778 doi:10.1093/jxb/eri197

    Article  PubMed  CAS  Google Scholar 

  • Bending GD (2007) What are the mechanisms and specificity of mycorrhization helper bacteria? New Phytol 173:707–710 doi:10.1111/j.1469-8137.2007.02076.x

    Article  Google Scholar 

  • Bending GD, Aspray TJ, Whipps JM (2006) Significance of microbial interactions in the mycorrhizosphere. Adv Appl Microbiol 60:97–132

    Article  PubMed  CAS  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J et al (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243–4248 doi:10.1128/AEM.69.7.4243-4248.2003

    Article  PubMed  CAS  Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed  CAS  Google Scholar 

  • Dunstan WA, Malajczuk N, Dell B (1998) Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell. Seedlings. Plant Soil 201:241–249 doi:10.1023/A:1004329626763

    Article  CAS  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    PubMed  CAS  Google Scholar 

  • Founoune H, Duponnois R, Meyer JM, Ba AM, Chotte JL, Neyra M (2002) Interactions between ectomycorrhizal symbiosis and fluorescent Pseudomonads on Acacia holosericea: isolation of mycorrhization helper bacteria (MHB) from a soudano-sahelian soil. FEMS Microbiol Ecol 41:37–46 doi:10.1111/j.1574-6941.2002.tb00964.x

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J (2005) Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions.. New Phytol 168:4–8 doi:10.1111/j.1469-8137.2005.01553.x

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36 doi:10.1111/j.1469-8137.2007.02191.x

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210 doi:10.1111/j.1469-8137.1994.tb04003.x

    Article  Google Scholar 

  • Garbaye J, Duponnois R (1992) Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Symbiosis 14:335–344

    Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Press, Dordrecht, pp 239–262

    Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1939) The water-culture method for growing plants without soil. Agricultural Experiment Station, circular 347. University of California, Berkely, CA, USA

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13 doi:10.1016/j.femsec.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldán A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487 doi:10.1016/j.apsoil.2006.10.006

    Article  Google Scholar 

  • Kormanik PP, Mcgraw AC (1982) Quantification of vesicular arbuscular mycorrhiza in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, pp 37–45

    Google Scholar 

  • Larsen J, Ravnskov S, Jakobsen I (2003) Combined effect of an arbuscular mycorrhizal fungus and a biocontrol bacterium against Pythium ultimum in soil. Folia Geobot 38:145–154 doi:10.1007/BF02803147

    Article  Google Scholar 

  • Li B, Ravnskov S, Xie GL, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. BioControl 52:863–875 doi:10.1007/s10526-007-9076-2

    Article  Google Scholar 

  • Mamoun M, Olivier JM (1992) Effect of soil Pseudomonads on colonization of hazel roots by the ecto-mycorrhizal species Tuber melanosporum and its competitors. Plant Soil 139:265–273 doi:10.1007/BF00009318

    Article  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bødker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140 doi:10.1111/j.1574-6941.2002.tb00974.x

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant Soil 251:279–289 doi:10.1023/A:1023034825871

    Article  CAS  Google Scholar 

  • Medina A, Probanza A, Gutierrez Mañero FJ, Azcόn R (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22:15–28 doi:10.1016/S0929-1393(02)00112-9

    Article  Google Scholar 

  • Newman EI (1965) A method of estimating the total length of roots in a sample. J Appl Ecol 3:139–145 doi:10.2307/2401670

    Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073 doi:10.1017/S0953756299002191

    Article  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751 doi:10.1046/j.0028-646x.2001.00219.x

    Article  Google Scholar 

  • Raimam MP, Albino U, Cruz MF, Lovato GM, Spago F, Ferracin TP et al (2007) Interaction among free-living N-fixing bacteria isolated from Drosera villosa var. villosa and AM fungi (Glomus clarum) in rice (Oryza sativa). Appl Soil Ecol 35:25–34 doi:10.1016/j.apsoil.2006.05.013

    Article  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618 doi:10.1111/j.1469-8137.1995.tb03029.x

    Article  Google Scholar 

  • Ravnskov S, Jakobsen I (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329–334 doi:10.1007/s005720050254

    Article  CAS  Google Scholar 

  • Ravnskov S, Larsen J, Jakobsen I (2002) Phosphorous uptake of an arbuscular mycorrhizal fungus is not affected by the biocontrol bacterium Burkholderia cepacia. Soil Biol Biochem 34:1875–1881 doi:10.1016/S0038-0717(02)00201-8

    Article  CAS  Google Scholar 

  • Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Cannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia (Jena) 49:251–259 doi:10.1016/j.pedobi.2004.11.003

    Article  Google Scholar 

  • Ryu CM, Kim J, Choi O, Park SY, Park SH, Park CS (2005) Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J Microbiol Biotechnol 15:984–991

    Google Scholar 

  • Schelkle M, Peterson RL (1996) Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6:481–485 doi:10.1007/s005720050151

    Article  Google Scholar 

  • Timmusk S (2003) Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Ph.D thesis, Department of cell and molecular biology, Uppsala University, Sweden

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852 doi:10.1016/S0038-0717(99)00113-3

    Article  CAS  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40 doi:10.1111/j.1574-6968.2005.00003.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Sino–Danish Scientific and Technological Cooperation New Project Proposal for 14th Session (2004–2006; Granted No. AM14: 33). Tina Tønnersen is thanked for excellent technical assistance. Dr. Gary D. Bending is thanked for providing us with Paenibacillus sp. EJP73.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Ravnskov, S., Xie, G. et al. Differential effects of Paenibacillus spp. on cucumber mycorrhizas. Mycol Progress 7, 277–284 (2008). https://doi.org/10.1007/s11557-008-0570-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-008-0570-4

Keywords

Navigation