Skip to main content
Log in

Unambiguous radiologic extranodal extension determined by MRI could be a biomarker in predicting metastatic prostate cancer

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Objective

To explore the relationship between unambiguous radiologic extranodal extension (rENE) and M1 staging in patients with metastatic PCa.

Methods

A respective analysis of 1073 patients of PCa N1 staging from January 2004 to May 2022 was retrospectively enrolled. They were divided into rENE + and rENE −  groups and retrospectively analyzed the M staging with nuclear medicine data. The correlation index between unambiguous rENE and M1b staging was calculated. Logistic regression was used to evaluate the predictive performance of unambiguous rENE in M1b staging. ROC curves were used to investigate the relationship between unambiguous rENE and M staging in patients who underwent 68 Ga-PSMA PET/CT.

Results

A total of 1073 patients were included. Seven hundred and eighty patients were classified into the rENE + group (mean age, 69.6 years ± 8.7 [standard deviation]), and 293 were classified into rENE −  group (mean age, 66.7 years ± 9.4 [standard deviation]). Relationship between unambiguous rENE and M1b existed (r = 0.58, 95%CI: 0.52–0.64, P < 0.05). Unambiguous rENE could be an independent predictor for M1b (OR = 13.64, 95%CI: 9.23–20.14, P < 0.05). The AUC of unambiguous rENE in predicting M1b and M staging was 0.835 and 0.915, respectively, in patients who underwent 68 Ga-PSMA PET/CT.

Conclusions

Unambiguous rENE could be a strong biomarker to predict M1b and M staging in patients with PCa. When rENE came up, patients should perform nuclear medicine immediately, and a systematic treatment should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Luchini C, Fleischmann A, Boormans JL et al (2017) Extranodal extension of lymph node metastasis influences recurrence in prostate cancer: a systematic review and meta-analysis. Sci Rep 7:2347. https://doi.org/10.1038/s41598-017-02577-4

    Article  CAS  Google Scholar 

  3. Boormans JL, Mark FW, Chris HB et al (2008) Histopathological characteristics of lymph node metastases predict cancer-specific survival in node-positive prostate cancer. BJU Int 41:1589–1593. https://doi.org/10.1111/j.1464-410X.2008.07904.x

    Article  Google Scholar 

  4. Adams J, Cheng L (2011) Lymph node-positive prostate cancer: current issues, emerging technology and impact on clinical outcome. Expert Rev Anticancer Ther 11:1457–1469. https://doi.org/10.1586/era.11.104

    Article  PubMed  Google Scholar 

  5. Schiavina R, BorghesiBrunocilla ME et al (2013) Differing risk of cancer death among patients with lymph node metastasis after radical prostatectomy and pelvic lymph node dissection: identification of risk categories according to number of positive nodes and Gleason score. BJU Int 111:1237–1244. https://doi.org/10.1111/j.1464-410X.2012.11602.x

    Article  PubMed  Google Scholar 

  6. Lydiatt WM, Patel SG, O’Sullivan B et al (2017) Head and neck cancers major changes in the American joint committee. CA Cancer J Clin 67:122–137. https://doi.org/10.3322/caac.21389

    Article  PubMed  Google Scholar 

  7. Karakurt EM, Kadıyoran C (2022) prognostic significance of radiologic extranodal extension in nasopharyngeal cancer. Otolaryngol Head Neck Surg 166:321–326. https://doi.org/10.1177/01945998211008887

    Article  Google Scholar 

  8. Cornford P, van de BRCN, Briers E et al (2021) EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer. Part II—2020 update: treatment of relapsing and metastatic prostate cancer. Eur Urol 79:263–282. https://doi.org/10.1016/j.eururo.2020.09.046

    Article  CAS  PubMed  Google Scholar 

  9. Varma M, Cochlin D, Delahunt B et al (2019) TNM clinical staging of prostate cancer: issues and solutions. BJU Int 123:382–384. https://doi.org/10.1111/bju.14589

    Article  PubMed  Google Scholar 

  10. Zhang J, Shao S, Wu P et al (2019) Diagnostic performance of 68Ga-PSMA PET/CT in the detection of prostate cancer prior to initial biopsy: comparison with cancer-predicting nomograms. Eur J Nucl Med Mol Imaging 46:908–920. https://doi.org/10.1007/s00259-018-4255-1

    Article  PubMed  Google Scholar 

  11. Padhani AR, Weinreb J, Rosenkrantz AB et al (2019) Prostate imaging-reporting and data system steering committee: PI-RADS v2 status update and future directions. Euro Urol 75:385–396. https://doi.org/10.1016/j.eururo.2018.05.035

    Article  Google Scholar 

  12. Gensheimer MF, Le Q (2019) Radiographic extranodal extension in human papillomavirus-associated oropharyngeal carcinoma: can it help tailor treatment. Int J Radiat Oncol Biol Phys 104:1028–1029. https://doi.org/10.1016/j.ijrobp.2019.05.022

    Article  PubMed  Google Scholar 

  13. Lee B, Choi JY, Kim SO et al (2019) Prognostic value of radiologic extranodal extension in human papillomavirus-related oropharyngeal squamous cell carcinoma. Korean J Radiol 20:1266–1274. https://doi.org/10.3348/kjr.2018.0742

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faraji F, Aygun N, Coquia SF et al (2020) Computed tomography performance in predicting extranodal extension in HPV-positive oropharynx cancer. Laryngoscope 130:1479–1486. https://doi.org/10.1002/lary.28237

    Article  CAS  PubMed  Google Scholar 

  15. Noor A, Mintz J, Patel S et al (2019) Predictive value of computed tomography in identifying extracapsular spread of cervical lymph node metastases in p16 positive oropharyngeal squamous cell carcinoma. J Med Imaging Radiat Oncol 63:500–509. https://doi.org/10.1111/1754-9485.12888

    Article  PubMed  Google Scholar 

  16. Horváth A, Prekopp P, Polony G et al (2021) Accuracy of the preoperative diagnostic workup in patients with head and neck cancers undergoing neck dissection in terms of nodal metastases. Eur Arch Otorhinolaryngol 278:2041–2046. https://doi.org/10.1007/s00405-020-06324-w

    Article  PubMed  Google Scholar 

  17. Tian S, Ferris MJ, Switchenko JM et al (2019) Prognostic value of radiographically defined extranodal extension in human papillomavirus-associated locally advanced oropharyngeal carcinoma. Head Neck 41:3056–3063. https://doi.org/10.1002/hed.25791

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paner GP, Stadler WM, Hansel DE et al (2018) Updates in the eighth edition of the tumor-node-metastasis staging classification for urologic cancers. Eur Urol 73:560–569. https://doi.org/10.1016/j.eururo.2017.12.018

    Article  PubMed  Google Scholar 

  19. Offermann A, Hupe MC, Sailer V et al (2020) The new ISUP 2014/WHO 2016 prostate cancer grade group system: first résumé 5 years after introduction and systemic review of the literature. World J Urol 38:657–662. https://doi.org/10.1007/s00345-019-02744-4

    Article  CAS  PubMed  Google Scholar 

  20. Tsai T, Chou Y, Lu Y et al (2021) The prognostic value of radiologic extranodal extension in nasopharyngeal carcinoma: systematic review and meta-analysis. Oral Oncol 122:105518. https://doi.org/10.1016/j.oraloncology.2021.105518

    Article  PubMed  Google Scholar 

  21. Mao Y, Wang S, Lydiatt W et al (2021) Unambiguous advanced radiologic extranodal extension determined by MRI predicts worse outcomes in nasopharyngeal carcinoma: Potential improvement for future editions of N category systems. Radiother Oncol 157:114–121. https://doi.org/10.1016/j.radonc.2021.01.015

    Article  PubMed  Google Scholar 

  22. Furesi G, Rauner M, Hofbauer LC et al (2021) Emerging players in prostate cancer-bone niche communication. Trends Cancer 7:112–121. https://doi.org/10.1016/j.trecan.2020.09.006

    Article  CAS  PubMed  Google Scholar 

  23. Chen R, Yang Q, Chen W et al (2021) Whole-body MRI-based multivariate prediction model in the assessment of bone metastasis in prostate cancer. World J Urol 39:2937–2943. https://doi.org/10.1007/s00345-020-03571-8

    Article  PubMed  Google Scholar 

  24. Hofman MS, Lawrentschuk N, Francis RJ et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216. https://doi.org/10.1007/s00345-020-03571-8

    Article  CAS  PubMed  Google Scholar 

  25. Tuncel M, Tuncalı MÇ, Telli T et al (2020) Clinical impact of PET imaging in patients with metastatic prostate cancer. Clin Nucl Med 45:757–764. https://doi.org/10.1097/RLU.0000000000003126

    Article  PubMed  Google Scholar 

  26. Berish RB, Ali AN, Telmer PG et al (2018) Translational models of prostate cancer bone metastasis. Nat Rev Urol 15:403–421. https://doi.org/10.1038/s41585-018-0020-2

    Article  CAS  PubMed  Google Scholar 

  27. Padhani AR, Lecouvet FE, Tunariu N et al (2017) METastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 71:81–92. https://doi.org/10.1016/j.eururo.2016.05.033

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rowe SP, Pienta KJ, Pomper MG et al (2018) PSMA-RADS Version 1.0: a step towards standardizing the interpretation and reporting of PSMA–targeted PET imaging studies. Eur Urol 73:485–487. https://doi.org/10.1016/j.eururo.2017.10.027

    Article  PubMed  Google Scholar 

  29. Pomykala KL, Czernin J, Grogan TR et al (2020) Total-body 68Ga-PSMA-11 PET/CT for bone metastasis detection in prostate cancer patients: potential impact on bone scan guidelines. J Nucl Med 61:405–411. https://doi.org/10.2967/jnumed.119.230318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Natural Science Basic Research Program of Shaanxi Province, China (2021JZ-25). The National Natural Science Foundation of China (No. 82220108004). The Science and technology Innovation team of Shaanxi Province, China (2021TD-39)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ren.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

Ethical standards This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Shen, F., Jiao, J. et al. Unambiguous radiologic extranodal extension determined by MRI could be a biomarker in predicting metastatic prostate cancer. Radiol med 128, 520–527 (2023). https://doi.org/10.1007/s11547-023-01631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01631-8

Keywords

Navigation