Skip to main content
Log in

Clinical indications for cardiac computed tomography. From the Working Group of the Cardiac Radiology Section of the Italian Society of Medical Radiology (SIRM)

Indicazioni cliniche per l’utilizzo della tomografia computerizzata del cuore. A cura del gruppo di lavoro della Sezione di Cardio-Radiologia della Società Italiana di Radiologia Medica (SIRM)

  • Cardiac Radiology / Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Cardiac computed tomography (CCT) has grown as a useful means in different clinical contexts. Technological development has progressively extended the indications for CCT while reducing the required radiation dose. Even today there is little documentation from the main international scientific societies describing the proper use and clinical indications of CCT; in particular, there are no complete guidelines. This document reflects the position of the Working Group of the Cardiac Radiology Section of the Italian Society of Radiology concerning the indications for CCT.

Riassunto

La tomografia computerizzata del cuore (CCT) è diventata uno strumento efficace in differenti contesti clinici. Lo sviluppo della tecnologia ha portato ad una progressiva espansione delle indicazioni con una concomitante riduzione della dose di radiazioni necessaria per l’esecuzione dell’indagine. Ancora oggi sono pochi i documenti delle maggiori società scientifiche internazionali che si esprimono sulle effettive modalità di utilizzo e sulle indicazioni cliniche della CCT; in particolare mancano delle linee guida complete. Questo documento rispecchia la visione del gruppo di lavoro della Sezione di Cardio-Radiologia della Società Italiana di Radiologia Medica in merito alle indicazioni correnti della CCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Maffei E, Martini C, De Crescenzo S et al (2010) Low dose CT of the heart: a quantum leap into a new era of cardiovascular imaging. Radiol Med 115:1179–1207

    Article  PubMed  CAS  Google Scholar 

  2. Cademartiri F, Luccichenti G, Marano R et al (2003) Non-invasive angiography of the coronary arteries with multislice computed tomography: state of the art and future prospects. Radiol Med (Torino) 106:284–296

    CAS  Google Scholar 

  3. Cademartiri F, Runza G, Belgrano M et al (2005) Introduction to coronary imaging with 64-slice computed tomography. Radiol Med (Torino) 110:16–41

    Google Scholar 

  4. Nieman K, Oudkerk M, Rensig BJ et al (2001) Coronary angiography with multislice computed tomography. Lancet 357:599–603

    Article  PubMed  CAS  Google Scholar 

  5. Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118:586–606

    Article  PubMed  Google Scholar 

  6. Fox K, Garcia MA, Ardissino D et al (2006) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381

    Article  PubMed  Google Scholar 

  7. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/ SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  8. Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/ AHA/ASE/ASNC/NASCI/SCAI/ SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894

    Article  PubMed  Google Scholar 

  9. Carbonaro S, Villines TC, Hausleiter J et al (2009) International, multidisciplinary update of the 2006 Appropriateness Criteria for cardiac computed tomography. J Cardiovasc Comput Tomogr 3:224–232

    Article  PubMed  Google Scholar 

  10. Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556

    Article  PubMed  Google Scholar 

  11. Pennell DJ, Sechtem UP, Higgins CB et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 25:1940–1965

    Article  PubMed  Google Scholar 

  12. Cademartiri F, Luccichenti G, Marano R et al (2003) Spiral CT-angiography with one, four, and sixteen slice scanners. Technical note. Radiol Med (Torino) 106:269–283

    Google Scholar 

  13. Cademartiri F, Luccichenti G, van Der Lugt A et al (2004) Sixteen-row multislice computed tomography: basic concepts, protocols, and enhanced clinical applications. Semin Ultrasound CT MR 25:2–16

    Article  PubMed  Google Scholar 

  14. Maffei E, Palumbo AA, Martini C et al (2009) “In-house” pharmacological management for computed tomography coronary angiography: heart rate reduction, timing and safety of different drugs used during patient preparation. Eur Radiol 19:2931–2940

    Article  PubMed  Google Scholar 

  15. Raff GL, Abidov A, Achenbach S et al (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3:122–136

    Article  PubMed  Google Scholar 

  16. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. Jama 301:500–507

    Article  PubMed  CAS  Google Scholar 

  17. Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798

    Article  PubMed  Google Scholar 

  18. Weustink AC, Mollet NR, Neefjes LA et al (2009) Preserved diagnostic performance of dual-source CT coronary angiography with reduced radiation exposure and cancer risk. Radiology 252:53–60

    Article  PubMed  Google Scholar 

  19. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336

    Article  PubMed  CAS  Google Scholar 

  20. Miller JM, Dewey M, Vavere AL et al (2009) Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19:816–828

    Article  PubMed  Google Scholar 

  21. Marano R, De Cobelli F, Floriani I et al (2009) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Inv.asive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123

    Article  PubMed  Google Scholar 

  22. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Inv.asive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  23. Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    Article  PubMed  Google Scholar 

  24. Weustink AC, Mollet NR, Neefjes LA et al (2010) Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Ann Intern Med 152:630–639

    PubMed  Google Scholar 

  25. Pundziute G, Schuijf JD, Jukema JW et al (2007) Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 49:62–70

    Article  PubMed  Google Scholar 

  26. Min JK, Shaw LJ, Devereux RB et al (2007) Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 50:1161–1170

    Article  PubMed  Google Scholar 

  27. Min JK, Dunning A, Lin FY et al (2011) Rationale and design of the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) Registry. J Cardiovasc Comput Tomogr 5:84–92

    Article  PubMed  Google Scholar 

  28. van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632

    Article  PubMed  Google Scholar 

  29. van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Incremental prognostic value of multi-slice computed tomography coronary angiography over coronary artery calcium scoring in patients with suspected coronary artery disease. Eur Heart J 30:2622–2629

    Article  PubMed  CAS  Google Scholar 

  30. Van Werkhoven JM, Cademartiri F, Seitun S et al (2010) Diabetes: prognostic value of CT coronary angiography—comparison with a nondiabetic population. Radiology 256:83–92

    Article  PubMed  Google Scholar 

  31. Hadamitzky M, Freissmuth B, Meyer T et al (2009) Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging 2:404–411

    Article  PubMed  Google Scholar 

  32. Aldrovandi A, Maffei E, Palumbo A et al (2009) Prognostic value of computed tomography coronary angiography in patients with suspected coronary artery disease: a 24-month follow-up study. Eur Radiol 19:1653–1660

    Article  PubMed  Google Scholar 

  33. Aldrovandi A, Maffei E, Seitun S et al (2012) Major adverse cardiac events and the severity of coronary atherosclerosis assessed by computed tomography coronary angiography in an outpatient population with suspected or known coronary artery disease. J Thorac Imaging 27:23–28

    Article  PubMed  Google Scholar 

  34. Ben Saad M, Rohnean A, Sigal-Cinqualbre A et al (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39:668–676

    Article  PubMed  Google Scholar 

  35. Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249

    Article  PubMed  Google Scholar 

  36. Paul JF, Rohnean A, Sigal-Cinqualbre A (2010) Multidetector CT for congenital heart patients: what a paediatric radiologist should know. Pediatr Radiol 40:869–875

    Article  PubMed  Google Scholar 

  37. Leschka S, Oechslin E, Husmann L et al (2007) Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. Radiographics 27:829–846

    Article  PubMed  Google Scholar 

  38. Shiraishi I, Kajiyama Y, Yamagishi M et al (2010) The applications of non-ECG-gated MSCT angiography in children with congenital heart disease. Int J Cardiol, in press

  39. Long YG, Yang YY, Huang IL et al (2010) Role of multi-slice and threedimensional computed tomography in delineating extracardiac vascular abnormalities in neonates. Pediatr Neonatol 51:227–234

    Article  PubMed  Google Scholar 

  40. Malago R, D’Onofrio M, Brunelli S et al (2010) Anatomical variants and anomalies of the coronary tree studied with MDCT coronary angiography. Radiol Med 115:679–692

    Article  PubMed  CAS  Google Scholar 

  41. Cademartiri F, La Grutta L, Malago R et al (2008) Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography. Eur Radiol 18:781–791

    Article  PubMed  Google Scholar 

  42. Angelini P, Velasco JA, Flamm S (2002) Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation 105:2449–2454

    Article  PubMed  Google Scholar 

  43. Marcora S, Di Renzi P, Giannico S et al (2011) A CT study of coronary arteries in adult mustard patients. JACC Cardiovasc Imaging 4:89–93

    Article  PubMed  Google Scholar 

  44. Eicken A, Ewert P, Hager A et al (2011) Percutaneous pulmonary valve implantation: two-centre experience with more than 100 patients. Eur Heart J 32:1260–1265

    Article  PubMed  Google Scholar 

  45. Kenny DP, Hamilton M, Martin R (2011) CT or MRI for post-procedural aortic stenting? Heart 97:164

    Article  PubMed  Google Scholar 

  46. Sigal-Cinqualbre A, Lambert V, Ronhean A, Paul JF (2011) Role of MSCT and MRI in the diagnosis of congenital heart disease. Arch Pediatr, in press

  47. Hayabuchi Y, Inoue M, Watanabe N et al (2010) Assessment of systemicpulmonary collateral arteries in children with cyanotic congenital heart disease using multidetector-row computed tomography: comparison with conventional angiography. Int J Cardiol 138:266–271

    Article  PubMed  Google Scholar 

  48. Oudkerk M, Stillman AE, Halliburton SS et al (2008) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Eur Radiol 18:2785–2807

    Article  PubMed  Google Scholar 

  49. Kronmal RA, McClelland RL, Detrano R et al (2007) Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 115:2722–2730

    Article  PubMed  Google Scholar 

  50. Greenland P, Bonow RO, Brundage BH et al (2007) ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 49:378–402

    Article  PubMed  Google Scholar 

  51. Greenland P, Alpert JS, Beller GA et al (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 56:e50–e103

    Article  PubMed  Google Scholar 

  52. Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54:49–57

    Article  PubMed  Google Scholar 

  53. Bachar GN, Atar E, Fuchs S, Dror D, Kornowski R (2007) Prevalence and clinical predictors of atherosclerotic coronary artery disease in asymptomatic patients undergoing coronary multidetector computed tomography. Coron Artery Dis 18:353–360

    Article  PubMed  Google Scholar 

  54. Schmid M, Achenbach S, Ropers D et al (2008) Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol 101:579–584

    Article  PubMed  Google Scholar 

  55. Choi EK, Choi SI, Rivera JJ et al (2008) Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol 52:357–365

    Article  PubMed  Google Scholar 

  56. Cademartiri F, Maffei E, Palumbo A et al (2010) Coronary calcium score and computed tomography coronary angiography in high-risk asymptomatic subjects: assessment of diagnostic accuracy and prevalence of nonobstructive coronary artery disease. Eur Radiol 20:846–854

    Article  PubMed  Google Scholar 

  57. Cademartiri F, Maffei E, Palumbo A et al (2010) Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score. Eur Radiol 20:81–87

    Article  PubMed  Google Scholar 

  58. Romeo F, Leo R, Clementi F et al (2007) Multislice computed tomography in an asymptomatic highrisk population. Am J Cardiol 99:325–328

    Article  PubMed  Google Scholar 

  59. Rivera JJ, Nasir K, Choi EK et al (2009) Detection of occult coronary artery disease in asymptomatic individuals with diabetes mellitus using non-invasive cardiac angiography. Atherosclerosis 203:442–448

    Article  PubMed  CAS  Google Scholar 

  60. Gregory SA, Ferencik M, Achenbach S et al (2006) Comparison of sixtyfour-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol 98:877–884

    Article  PubMed  Google Scholar 

  61. Catalan P, Leta R, Hidalgo A et al (2011) Ruling out coronary artery disease with noninvasive coronary multidetector CT angiography before noncoronary cardiovascular surgery. Radiology 258:426–434

    Article  PubMed  Google Scholar 

  62. Budde RP, Huo F, Cramer MJ et al (2010) Simultaneous aortic and coronary assessment in abdominal aortic aneurysm patients by thoracoabdominal 64-detector-row CT angiography: estimate of the impact on preoperative management: a pilot study. Eur J Vasc Endovasc Surg 40:196–201

    Article  PubMed  CAS  Google Scholar 

  63. Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121

    Article  PubMed  Google Scholar 

  64. Goldstein JA, Gallagher MJ, O’Neill WW et al (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871

    Article  PubMed  Google Scholar 

  65. Hoffmann U, Bamberg F, Chae CU et al (2009) Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 53:1642–1650

    Article  PubMed  Google Scholar 

  66. Ladapo JA, Hoffmann U, Bamberg F et al (2008) Cost-effectiveness of coronary MDCT in the triage of patients with acute chest pain. AJR Am J Roentgenol 191:455–463

    Article  PubMed  Google Scholar 

  67. Maffei E, Seitun S, Martini C et al (2011) Prognostic value of computed tomography coronary angiography in patients with chest pain of suspected cardiac origin. Radiol Med 116:690–705

    Article  PubMed  CAS  Google Scholar 

  68. Meijboom WB, Mollet NR, Van Mieghem CA et al (2007) 64-slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 93:1386–1392

    Article  PubMed  Google Scholar 

  69. Schuijf JD, Pundziute G, Jukema JW et al (2007) Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology 245:416–423

    Article  PubMed  Google Scholar 

  70. Cademartiri F, Schuijf JD, Pugliese F et al (2007) Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 49:2204–2210

    Article  PubMed  Google Scholar 

  71. Carrabba N, Schuijf JD, de Graaf FR et al (2010) Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a meta-analysis. J Nucl Cardiol 17:470–478

    Article  PubMed  Google Scholar 

  72. Carrabba N, Bamoshmoosh M, Carusi LM et al (2007) Usefulness of 64-slice multidetector computed tomography for detecting drug eluting in-stent restenosis. Am J Cardiol 100:1754–1758

    Article  PubMed  Google Scholar 

  73. Ehara M, Kawai M, Surmely JF et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 49:951–959

    Article  PubMed  Google Scholar 

  74. Hamon M, Champ-Rigot L, Morello R, Riddell JW (2008) Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis. Eur Radiol 18:217–225

    Article  PubMed  Google Scholar 

  75. Sun Z, Davidson R, Lin CH (2009) Multi-detector row CT angiography in the assessment of coronary in-stent restenosis: a systematic review. Eur J Radiol 69:489–495

    Article  PubMed  Google Scholar 

  76. Ropers D, Pohle FK, Kuettner A et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114:2334–2341

    Article  PubMed  Google Scholar 

  77. Malagutti P, Nieman K, Meijboom WB et al (2006) Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J 28:1879–1885

    Article  PubMed  Google Scholar 

  78. Meyer TS, Martinoff S, Hadamitzky M et al (2007) Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol 49:946–950

    Article  PubMed  Google Scholar 

  79. Stein PD, Yaekoub AY, Matta F, Sostman HD (2008) 64-slice CT for diagnosis of coronary artery disease: a systematic review. Am J Med 121:715–725

    Article  PubMed  Google Scholar 

  80. Hamon M, Lepage O, Malagutti P et al (2008) Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: metaanalysis. Radiology 247:679–686

    Article  PubMed  Google Scholar 

  81. Martuscelli E, Romagnoli A, D’Eliseo A et al (2004) Evaluation of venous and arterial conduit patency by 16-slice spiral computed tomography. Circulation 110:3234–3238

    Article  PubMed  CAS  Google Scholar 

  82. Weustink AC, Nieman K, Pugliese F et al (2009) Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging 2:816–824

    Article  PubMed  Google Scholar 

  83. Mahnken AH, Koos R, Katoh M et al (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047

    Article  PubMed  Google Scholar 

  84. Baks T, Cademartiri F, Moelker AD et al (2006) Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J Am Coll Cardiol 48:144–152

    Article  PubMed  Google Scholar 

  85. Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404

    Article  PubMed  Google Scholar 

  86. Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833

    Article  PubMed  Google Scholar 

  87. le Polain de Waroux JB, Pouleur AC et al (2008) Combined coronary and late-enhanced multidetector-computed tomography for delineation of the etiology of left ventricular dysfunction: comparison with coronary angiography and contrast-enhanced cardiac magnetic resonance imaging. Eur Heart J 29:2544–2551

    Article  PubMed  Google Scholar 

  88. Nieman K, Shapiro MD, Ferencik M et al. (2008) Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology 247:49–56

    Article  PubMed  Google Scholar 

  89. Habis M, Capderou A, Sigal-Cinqualbre A et al (2009) Comparison of delayed enhancement patterns on multislice computed tomography immediately after coronary angiography and cardiac magnetic resonance imaging in acute myocardial infarction. Heart 95:624–629

    Article  PubMed  CAS  Google Scholar 

  90. Mollet NR, Hoye A, Lemos PA et al (2005) Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol 95:240–243

    Article  PubMed  Google Scholar 

  91. Yokoyama N, Yamamoto Y, Suzuki S et al (2006) Impact of 16-slice computed tomography in percutaneous coronary intervention of chronic total occlusions. Catheter Cardiovasc Interv 68:1–7

    Article  PubMed  Google Scholar 

  92. Soon KH, Cox N, Wong A et al (2007) CT coronary angiography predicts the outcome of percutaneous coronary intervention of chronic total occlusion. J Interv Cardiol 20:359–366

    Article  PubMed  Google Scholar 

  93. Van Mieghem CA, Thury A, Meijboom WB et al (2007) Detection and characterization of coronary bifurcation lesions with 64-slice computed tomography coronary angiography. Eur Heart J 28:1968–1976

    Article  PubMed  Google Scholar 

  94. Garcia-Garcia HM, van Mieghem CA, Gonzalo N et al (2009) Computed tomography in total coronary occlusions (CTTO registry): radiation exposure and predictors of successful percutaneous intervention. EuroIntervention 4:607–616

    Article  PubMed  Google Scholar 

  95. Seneviratne SK, Truong QA, Bamberg F et al (2010) Incremental diagnostic value of regional left ventricular function over coronary assessment by cardiac computed tomography for the detection of acute coronary syndrome in patients with acute chest pain: from the ROMICAT trial. Circ Cardiovasc Imaging 3:375–383

    Article  PubMed  Google Scholar 

  96. Sugeng L, Mor-Avi V, Weinert L et al (2006) Quantitative assessment of left ventricular size and function: side-byside comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114:654–661

    Article  PubMed  Google Scholar 

  97. Ko SM, Kim YJ, Park JH, Choi NM (2010) Assessment of left ventricular ejection fraction and regional wall motion with 64-slice multidetector CT: a comparison with two-dimensional transthoracic echocardiography. Br J Radiol 83:28–34

    Article  PubMed  Google Scholar 

  98. Mahnken AH, Bruners P, Schmidt B et al (2009) Left ventricular function can reliably be assessed from dual-source CT using ECG-gated tube current modulation. Inv.est Radiol 44:384–389

    Article  Google Scholar 

  99. Palumbo A, Maffei E, Martini C et al (2010) Functional parameters of the left ventricle: comparison of cardiac MRI and cardiac CT in a large population. Radiol Med 115:702–713

    Article  PubMed  CAS  Google Scholar 

  100. Maffei E, Messalli G, Palumbo A et al (2010) Left ventricular ejection fraction: real-world comparison between cardiac computed tomography and echocardiography in a large population. Radiol Med 115:1015–1027

    Article  PubMed  CAS  Google Scholar 

  101. Gao Y, Du X, Liang L et al (2011) Evaluation of right ventricular function by 64-row CT in patients with chronic obstructive pulmonary disease and cor pulmonale. Eur J Radiol 81:345–353

    Article  Google Scholar 

  102. Guo YK, Gao HL, Zhang XC et al (2010) Accuracy and reproducibility of assessing right ventricular function with 64-section multi-detector row CT: comparison with magnetic resonance imaging. Int J Cardiol 139:254–262

    Article  PubMed  Google Scholar 

  103. Plumhans C, Muhlenbruch G, Rapaee A et al (2008) Assessment of global right ventricular function on 64-MDCT compared with MRI. AJR Am J Roentgenol 190:1358–1361

    Article  PubMed  Google Scholar 

  104. Willmann JK, Weishaupt D, Lachat M et al (2002) Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis. Radiology 225:120–128

    Article  PubMed  Google Scholar 

  105. Messika-Zeitoun D, Aubry MC, Detaint D et al (2004) Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography. Circulation 110:356–362

    Article  PubMed  Google Scholar 

  106. Feuchtner GM, Dichtl W, Friedrich GJ et al (2006) Multislice computed tomography for detection of patients with aortic valve stenosis and quantification of severity. J Am Coll Cardiol 47:1410–1417

    Article  PubMed  Google Scholar 

  107. Pouleur AC, le Polain de Waroux JB, Pasquet A et al (2007) Aortic valve area assessment: multidetector CT compared with cine MR imaging and transthoracic and transesophageal echocardiography. Radiology 244:745–754

    Article  PubMed  Google Scholar 

  108. Koos R, Mahnken AH, Kuhl HP et al (2006) Quantification of aortic valve calcification using multislice spiral computed tomography: comparison with atomic absorption spectroscopy. Inv.est Radiol 41:485–489

    Article  Google Scholar 

  109. Feuchtner GM, Dichtl W, Schachner T et al (2006) Diagnostic performance of MDCT for detecting aortic valve regurgitation. AJR Am J Roentgenol 186:1676–1681

    Article  PubMed  Google Scholar 

  110. Messika-Zeitoun D, Serfaty JM, Laissy JP et al (2006) Assessment of the mitral valve area in patients with mitral stenosis by multislice computed tomography. J Am Coll Cardiol 48:411–413

    Article  PubMed  Google Scholar 

  111. Gilkeson RC, Markowitz AH, Balgude A, Sachs PB (2006) MDCT evaluation of aortic valvular disease. AJR Am J Roentgenol 186:350–360

    Article  PubMed  Google Scholar 

  112. Bomma C, Dalal D, Tandri H et al (2007) Evolving role of multidetector computed tomography in evaluation of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Cardiol 100:99–105

    Article  PubMed  Google Scholar 

  113. Andreini D, Pontone G, Pepi M et al (2007) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 49:2044–2050

    Article  PubMed  Google Scholar 

  114. Chun EJ, Choi SI, Jin KN et al (2010) Hypertrophic cardiomyopathy: assessment with MR imaging and multidetector CT. Radiographics 30:1309–1328

    Article  PubMed  Google Scholar 

  115. Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y (2006) Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med 166:1350–1356

    Article  PubMed  Google Scholar 

  116. Castaner E, Andreu M, Gallardo X et al (2003) CT in nontraumatic acute thoracic aortic disease: typical and atypical features and complications. Radiographics 23(Spec No):S93–S110

    Article  PubMed  Google Scholar 

  117. Sueyoshi E, Matsuoka Y, Imada T et al (2002) New development of an ulcerlike projection in aortic intramural hematoma: CT evaluation. Radiology 224:536–541

    Article  PubMed  Google Scholar 

  118. Marotta R, Franchetto AA (1996) The CT appearance of aortic transection. AJR Am J Roentgenol 166:647–651

    PubMed  CAS  Google Scholar 

  119. Rockman C (2004) Reducing complications by better case selection: anatomic considerations. Semin Vasc Surg 17:298–306

    Article  PubMed  Google Scholar 

  120. Vahanian A, Alfieri O, Al-Attar N et al (2008) Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 29:1463–1470

    Article  PubMed  Google Scholar 

  121. Blanke P, Euringer W, Baumann T et al (2010) Combined assessment of aortic root anatomy and aortoiliac vasculature with dual-source CT as a screening tool in patients evaluated for transcatheter aortic valve implantation. AJR Am J Roentgenol 195:872–881

    Article  PubMed  Google Scholar 

  122. Kim JS, Kim HH, Yoon Y (2007) Imaging of pericardial diseases. Clin Radiol 62:626–631

    Article  PubMed  CAS  Google Scholar 

  123. Araoz PA, Mulvagh SL, Tazelaar HD et al (2000) CT and MR imaging of benign primary cardiac neoplasms with echocardiographic correlation. Radiographics 20:1303–1319

    PubMed  CAS  Google Scholar 

  124. van Beek EJ, Stolpen AH, Khanna G, Thompson BH (2007) CT and MRI of pericardial and cardiac neoplastic disease. Cancer Imaging 7:19–26

    Article  PubMed  Google Scholar 

  125. Verhaert D, Gabriel RS, Johnston D et al (2010) The role of multimodality imaging in the management of pericardial disease. Circ Cardiovasc Imaging 3:333–343

    Article  PubMed  Google Scholar 

  126. Wang ZJ, Reddy GP, Gotway MB et al (2003) CT and MR imaging of pericardial disease. Radiographics 23(Spec No):S167–S180

    Article  PubMed  Google Scholar 

  127. Rienmuller R, Groll R, Lipton MJ (2004) CT and MR imaging of pericardial disease. Radiol Clin North Am 42:587–601

    Article  PubMed  Google Scholar 

  128. Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    Article  PubMed  CAS  Google Scholar 

  129. Pappone C, Rosanio S, Oreto G et al (2000) Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102:2619–2628

    Article  PubMed  CAS  Google Scholar 

  130. Vardas PE, Auricchio A, Blanc JJ et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J 28:2256–2295

    Google Scholar 

  131. Marom EM, Herndon JE, Kim YH, McAdams HP (2004) Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230:824–829

    Article  PubMed  Google Scholar 

  132. Lacomis JM, Wigginton W, Fuhrman C et al (2003) Multi-detector row CT of the left atrium and pulmonary veins before radio-frequency catheter ablation for atrial fibrillation. Radiographics 23(Spec No):S35–S48

    Article  PubMed  Google Scholar 

  133. Ghaye B, Szapiro D, Dacher JN et al (2003) Percutaneous ablation for atrial fibrillation: the role of cross-sectional imaging. Radiographics 23(Spec No):S19–S33

    Article  PubMed  Google Scholar 

  134. Cappato R, Calkins H, Chen SA et al (2005) Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation 111:1100–1105

    Article  PubMed  Google Scholar 

  135. Maksimovic R, Cademartiri F, Scholten M et al (2004) Sixteen-row multislice computed tomography in the assessment of pulmonary veins prior to ablative treatment: validation vs conventional pulmonary venography and study of reproducibility. Eur Radiol 14:369–374

    Article  PubMed  Google Scholar 

  136. Maksimovic R, Scholten MF, Cademartiri F et al (2005) Sixteen multidetector row computed tomography of pulmonary veins: 3-months’ follow-up after treatment of paroxysmal atrial fibrillation with cryothermal ablation. Eur Radiol 15:1122–1127

    Article  PubMed  Google Scholar 

  137. Benini K, Marini M, Del Greco M et al (2008) Role of multidetector computed tomography in the anatomical definition of the left atrium-pulmonary vein complex in patients with atrial fibrillation. Personal experience and pictorial assay. Radiol Med 113:779–798

    Article  PubMed  CAS  Google Scholar 

  138. Kistler PM, Rajappan K, Jahngir M et al (2006) The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17:1093–1101

    Article  PubMed  Google Scholar 

  139. Tops LF, Bax JJ, Zeppenfeld K et al (2005) Fusion of multislice computed tomography imaging with three-dimensional electroanatomic mapping to guide radiofrequency catheter ablation procedures. Heart Rhythm 2:1076–1081

    Article  PubMed  Google Scholar 

  140. Meisel E, Pfeiffer D, Engelmann L et al (2001) Inv.estigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation 104:442–447

    CAS  Google Scholar 

  141. Cademartiri F, Marano R, Luccichenti G et al (2004) Normal anatomy of the vessels of the heart with 16-row multislice computed tomography. Radiol Med (Torino) 107:11–21

    Google Scholar 

  142. Daubert JC, Ritter P, Le Breton H et al (1998) Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin Electrophysiol 21:239–245

    Article  PubMed  CAS  Google Scholar 

  143. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853

    Article  PubMed  Google Scholar 

  144. Tada H, Kurosaki K, Naito S et al (2005) Three-dimensional visualization of the coronary venous system using multidetector row computed tomography. Circ J 69:165–170

    Article  PubMed  Google Scholar 

  145. Jongbloed MR, Lamb HJ, Bax JJ et al (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753

    Article  PubMed  Google Scholar 

  146. Lumia D, Lagana D, Cani A et al (2009) MDCT evaluation of the cardiac venous system. Radiol Med 114:837–851

    Article  PubMed  CAS  Google Scholar 

  147. Pontone G, Andreini D, Cortinovis S et al Imaging of cardiac venous system in patients with dilated cardiomyopathy by 64-slice computed tomography: comparison between non-ischemic and ischemic etiology. Int J Cardiol 144:340–343

  148. Hua W, Ding LG, Zhang S et al (2010) Usefulness of previsualization of the cardiac venous system by 64-slice computed tomography in patients with heart failure underwent cardiac resynchronization therapy. Zhonghua Xin Xue Guan Bing Za Zhi 38:610–613

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cademartiri.

Additional information

Documento ufficiale della Sezione di Cardio-Radiologia della Società Italiana di Radiologia Medica (SIRM)

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Cesare, E., Carbone, I., Carriero, A. et al. Clinical indications for cardiac computed tomography. From the Working Group of the Cardiac Radiology Section of the Italian Society of Medical Radiology (SIRM). Radiol med 117, 901–938 (2012). https://doi.org/10.1007/s11547-012-0814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-012-0814-x

Keywords

Parole chiave