Skip to main content
Log in

Role of diffusion-weighted imaging in the differential diagnosis of benign and malignant lesions of the chest-mediastinum

Ruolo della risonanza magnetica con sequenze pesate in diffusione nella diagnosi differenziale di lesioni benigne e maligne del distretto toracomediastinico

  • Chest Radiology / Radiologia Toracica
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

We retrospectively evaluated the role of diffusion-weighted imaging (DWI) with fat and background signal suppression in the differential diagnosis of benign and malignant lesions of the chest-mediastinum by calculating the mean apparent diffusion coefficient (ADC) values.

Materials and methods

Thirty-four patients with lung nodules/mediastinal masses underwent magnetic resonance (MR) imaging of the chest with conventional and DWI sequences. All patients had been previously studied with computed tomography (CT). After magnetic resonance (MR) imaging the patients underwent transthoracic CT-guided biopsy or mediastinoscopy. After the histopathological diagnosis had been obtained, the lesions were retrospectively divided into five groups: adenocarcinomas (n=16), squamous cell carcinomas (n=12), chronic pneumonias (n=2), malignant mediastinal tumours (n=2) and typical carcinoids (n=2). We compared ADC values in the different lesion groups using the Mann-Whitney U test.

Results

There were statistically significant differences (p<0.05) between ADC values of benign and malignant lesions. Using an ADC value of 1.25×10−3 mm2/s as a threshold, we were able to differentiate malignant from benign lesions with 91% diagnostic accuracy, 90% sensitivity, 100% specificity, 100% positive predictive value and 57% negative predictive value.

Conclusions

Short-tau inversion-recovery echo-planar imaging (STIR-EPI) sequences applied to the chest-mediastinum provided potentially useful images for the differential diagnosis of benign and malignant lesions.

Riassunto

Obiettivo

L’obiettivo del nostro lavoro è stato valutare retrospettivamente il ruolo delle sequenze pesate in diffusione con soppressione del segnale del grasso e del background nella diagnostica differenziale di lesioni benigne e maligne del distretto toraco-mediastinico, attraverso il calcolo dei valori medi del coefficiente di diffusione apparente (ADC).

Materiali e metodi

Trentaquattro pazienti portatori di noduli polmonari/masse mediastiniche, già sottoposti a tomografia computerizzata (TC) del torace sono stati sottoposti a risonanza magnetica (RM) del torace con sequenze pesate in diffusione. Dopo l’esame RM i pazienti sono stati sottoposti a biopsia transtoracica TC-guidata o a mediastinoscopia. Retrospettivamente, dopo aver ottenuto la diagnosi istopatologica, le lesioni sono state suddivise in cinque gruppi: adenocarcinomi (n=16), carcinomi squamocellulari (n=12), polmoniti croniche (n=2), tumori maligni mediastinici (n=2), carcinoidi tipici (n=2). Abbiamo confrontato i valori medi di ADC calcolati nei diversi gruppi utilizzando il test U di Mann-Whitney.

Risultati

Abbiamo ottenuto differenze statisticamente significative (p<0,05) tra i valori di ADC delle lesioni benigne e maligne. Utilizzando come valore soglia un valore di ADC di 1,25×10−3 mm2/s è stato possibile differenziare lesioni maligne dalle benigne con un’accuratezza diagnostica del 91%, sensibilità del 90%, specificità del 100%, valore predittivo positivo del 100% e valore predittivo negativo del 57%.

Conclusioni

Le sequenze short tau inversion recoveryecho-planar imaging (STIR-EPI) applicate al distretto toraco-mediastinico forniscono immagini potenzialmente utili per la diagnosi differenziale di lesioni benigne e maligne.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  2. Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. JMRI 16:172–178

    Article  PubMed  Google Scholar 

  3. Kinoshita T, Yashiro N, Ihara N et al (2002) Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 26:1042–1046

    Article  PubMed  Google Scholar 

  4. Ichikawa T, Araki T (1999) Fast magnetic resonance imaging of liver. Eur J Radiol 29:186–210

    Article  PubMed  CAS  Google Scholar 

  5. Wang J, Takashima S, Takayama F et al (2001) Head and neck lesions: characterization with diffusionweighted echo-planar MR imaging. Radiology 220:621–630

    Article  PubMed  CAS  Google Scholar 

  6. Yoshino N, Yamada I, Ohbayashi N et al (2002) Salivary glands and lesions: evaluation of apparent diffusion coefficients with splitecho diffusionweighted MR imaging: initial results. Radiology 221:837–842

    Article  Google Scholar 

  7. Sumi M, Takagi Y, Uetani M et al (2002) Diffusion-weighted echoplanar MR imaging of the salivary glands. AJR Am J Roentgenol 178:959–965

    PubMed  Google Scholar 

  8. Sumi M, Sakihama N, Sumi T et al (2003) Discrimination of metastatic cervical lymph nodes with diffusionweighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 24:1627–1634

    PubMed  Google Scholar 

  9. Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836

    Article  PubMed  CAS  Google Scholar 

  10. Stecco A, Romano G, Negru M et al (2009) Whole-body diffusionweighted magnetic resonance imaging in the staging of oncological patients: comparison with positron emission tomography computed tomography (PET-CT) in a pilot study. Radiol Med 114:1–17

    Article  PubMed  CAS  Google Scholar 

  11. Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiation Medicine 22:275–282

    PubMed  Google Scholar 

  12. Matoba M, Tonami H, Kondou T et al (2007) Lung carcinoma: diffusionweighted MR imaging-preliminary evaluation with apparent diffusion coefficient. Radiology 243:570–577

    Article  PubMed  Google Scholar 

  13. Mori T, Nomori H, Ikeda K et al (2008) Diffusion-weighted magnetic resonance imaging for diagnosis malignant pulmonary nodules/masses:comparison with positron emission tomography. J Thorac Oncol 3:358–364

    Article  PubMed  Google Scholar 

  14. Satoh S, Kitazume Y, Ohdama S et al (2008) Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roentgenol 191:464–470

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tondo, F., Saponaro, A., Stecco, A. et al. Role of diffusion-weighted imaging in the differential diagnosis of benign and malignant lesions of the chest-mediastinum. Radiol med 116, 720–733 (2011). https://doi.org/10.1007/s11547-011-0629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-011-0629-1

Keywords

Parole chiave

Navigation