Skip to main content
Log in

Markovian Approach for Exploring Competitive Diseases with Heterogeneity-Evidence from COVID-19 and Influenza in China

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Due to the complex interactions between multiple infectious diseases, the spreading of diseases in human bodies can vary when people are exposed to multiple sources of infection at the same time. Typically, there is heterogeneity in individuals' responses to diseases, and the transmission routes of different diseases also vary. Therefore, this paper proposes an SIS disease spreading model with individual heterogeneity and transmission route heterogeneity under the simultaneous action of two competitive infectious diseases. We derive the theoretical epidemic spreading threshold using quenched mean-field theory and perform numerical analysis under the Markovian method. Numerical results confirm the reliability of the theoretical threshold and show the inhibitory effect of the proportion of fully competitive individuals on epidemic spreading. The results also show that the diversity of disease transmission routes promotes disease spreading, and this effect gradually weakens when the epidemic spreading rate is high enough. Finally, we find a negative correlation between the theoretical spreading threshold and the average degree of the network. We demonstrate the practical application of the model by comparing simulation outputs to temporal trends of two competitive infectious diseases, COVID-19 and seasonal influenza in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

    Article  MathSciNet  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press

    Book  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L (2014) Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis 14(1):1–20

    Article  Google Scholar 

  • Boguná M, Castellano C, Pastor-Satorras R (2013) Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Phys Rev Lett 111(6):068701

    Article  Google Scholar 

  • Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M (2007) Transmission of influenza A in human beings. Lancet Infect Dis 7(4):257–265

    Article  Google Scholar 

  • Cai CR, Wu ZX, Chen MZ, Holme P, Guan JY (2016) Solving the dynamic correlation problem of the susceptible-infected-susceptible model on networks. Phys Rev Lett 116(25):258301

    Article  Google Scholar 

  • Chen J, Gu C, Ruan Z, Tang M (2023) Competition of SARS-CoV-2 variants on the pandemic transmission dynamics. Chaos Solitons Fractals 169:113193

    Article  MathSciNet  Google Scholar 

  • Chinese Center for Disease Control and Prevention (China CDC) https://www.chinacdc.cn/

  • Colizza V, Vespignani A (2007) Invasion threshold in heterogeneous metapopulation networks. Phys Rev Lett 99(14):148701

    Article  Google Scholar 

  • Colizza V, Pastor-Satorras R, Vespignani A (2007) Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat Phys 3(4):276–282

    Article  Google Scholar 

  • Dhanasekaran V, Sullivan S, Edwards KM, Xie R, Khvorov A, Valkenburg SA, Barr IG (2022) Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nat Commun 13(1):1721

    Article  Google Scholar 

  • Eames KT, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc Natl Acad Sci 99(20):13330–13335

    Article  Google Scholar 

  • Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60

    MathSciNet  Google Scholar 

  • Fang F, Ma J, Li Y (2023) The coevolution of the spread of a disease and competing opinions in multiplex networks. Chaos Solitons Fractals 170:113376

    Article  MathSciNet  Google Scholar 

  • Gao B, Deng Z, Zhao D (2016) Competing spreading processes and immunization in multiplex networks. Chaos Solitons Fractals 93:175–181

    Article  MathSciNet  Google Scholar 

  • Gormley M, Marawska L, Milton D (2020) It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin Infect Dis 71(9):2311–2313

    Google Scholar 

  • Granell C, Gómez S, Arenas A (2013) Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys Rev Lett 111(12):128701

    Article  Google Scholar 

  • He R, Luo X, Asamoah JKK, Zhang Y, Li Y, Jin Z, Sun GQ (2023) A hierarchical intervention scheme based on epidemic severity in a community network. J Math Biol 87(2):29

    Article  MathSciNet  Google Scholar 

  • Karrer B, Newman ME (2011) Competing epidemics on complex networks. Phys Rev E 84(3):036106

    Article  Google Scholar 

  • Kim H, Ha M, Jeong H (2015) Scaling properties in time-varying networks with memory. Eur Phys J B 88:1–8

    Article  Google Scholar 

  • Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J (2020) The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. https://doi.org/10.1093/jtm/taaa021

    Article  Google Scholar 

  • Luo XF, Feng S, Yang J, Peng XL, Cao X, Zhang J, Jin Z (2021) Nonpharmaceutical interventions contribute to the control of COVID-19 in China based on a pairwise model. Infect Dis Modell 6:643–663

    Google Scholar 

  • Meyers L (2007) Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bull Am Math Soc 44(1):63–86

    Article  MathSciNet  Google Scholar 

  • Newman ME (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016128

    Article  MathSciNet  Google Scholar 

  • Nie Y, Li W, Pan L, Lin T, Wang W (2022) Markovian approach to tackle competing pathogens in simplicial complex. Appl Math Comput 417:126773

    MathSciNet  Google Scholar 

  • Parshani R, Carmi S, Havlin S (2010) Epidemic threshold for the susceptible-infectious-susceptible model on random networks. Phys Rev Lett 104(25):258701

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001a) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63(6):066117

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001b) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200

    Article  Google Scholar 

  • Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87(3):925

    Article  MathSciNet  Google Scholar 

  • Perra N, Gonçalves B, Pastor-Satorras R, Vespignani A (2012) Activity driven modeling of time varying networks. Sci Rep 2(1):469

    Article  Google Scholar 

  • Rand DA (1999) Correlation equations and pair approximations for spatial ecologies. In: McGlade J (ed) Advanced ecological theory: principles and applications. Wiley, pp 100–142. https://doi.org/10.1002/9781444311501.ch4

    Chapter  Google Scholar 

  • Rodriguez-Barraquer I, Costa F, Nascimento EJ, Nery N, Castanha PM, Sacramento GA, Ko AI (2019) Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363(6427):607–610

    Article  Google Scholar 

  • Sahneh FD, Scoglio C (2014) Competitive epidemic spreading over arbitrary multilayer networks. Phys Rev E 89(6):062817

    Article  Google Scholar 

  • Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R (2020) High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 26(7):1470

    Article  Google Scholar 

  • Sanz J, Xia CY, Meloni S, Moreno Y (2014) Dynamics of interacting diseases. Phys Rev X 4(4):041005

    Google Scholar 

  • Saumell-Mendiola A, Serrano MÁ, Boguná M (2012) Epidemic spreading on interconnected networks. Phys Rev E 86(2):026106

    Article  Google Scholar 

  • Soriano-Paños D, Ghanbarnejad F, Meloni S, Gómez-Gardeñes J (2019) Markovian approach to tackle the interaction of simultaneous diseases. Phys Rev E 100(6):062308

    Article  Google Scholar 

  • Sun Q, Wang Z, Zhao D, Xia C, Perc M (2022) Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes. Chaos Solitons Fractals 164:112734

    Article  MathSciNet  Google Scholar 

  • Wang J, Du G (2020) COVID-19 may transmit through aerosol. Ir J Med Sci 1971- 189:1143–1144

    Google Scholar 

  • Wang W, Tang M, Stanley HE, Braunstein LA (2017) Unification of theoretical approaches for epidemic spreading on complex networks. Rep Prog Phys 80(3):036603

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  Google Scholar 

  • Yang JX (2019) Epidemic spreading on multilayer homogeneous evolving networks. Chaos Interdiscip J Nonlinear Sci 29(10):103146

    Article  MathSciNet  Google Scholar 

  • Zhao Y, Zheng M, Liu Z (2014) A unified framework of mutual influence between two pathogens in multiplex networks. Chaos Interdiscip J Nonlinear Sci 24(4):043129

    Article  MathSciNet  Google Scholar 

  • Zipfel CM, Colizza V, Bansal S (2021) The missing season: the impacts of the COVID-19 pandemic on influenza. Vaccine 39(28):3645–3648

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions, which have effectively improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Xu, Y. Markovian Approach for Exploring Competitive Diseases with Heterogeneity-Evidence from COVID-19 and Influenza in China. Bull Math Biol 86, 71 (2024). https://doi.org/10.1007/s11538-024-01300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-024-01300-5

Keywords

Navigation