Skip to main content

Advertisement

Log in

Within-Host Viral Dynamics in a Multi-compartmental Environment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The discrepancy in the turnover of cells and virus in different organs or viral reservoirs necessitates the investigation of multiple compartments within a host. Establishing a multi-compartmental structure that describes the complexity of various organs, where viral infection comprehensively proceeds, provides a modeling framework for exploring the effect of spatial heterogeneity on viral dynamics. To successfully suppress within-host viral replication, it is imperative to determine drug administration during therapy, particularly for a combination of antiretroviral drugs. The proposed model provides quantitative insights into pharmacokinetics and the resulting virus population, which substantially relates to environmental heterogeneity. The main results are the following: (1) A model incorporating drug treatment admits threshold dynamics, driving to either viral extinction or uniform persistence, regardless of non-trivial initial infection, in the entire system. (2) Viral infection may be underestimated if a well-mixed (single-compartmental) model is used. (3) Optimal drug administration depends not only on the drug distribution over various compartments but also on the timing, described by phase shifts, of the administration of different drugs in a combined therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bocharov G, Klenerman P, Ehl S (2003) Modelling the dynamics of LCMV infection in mice: II. Compartmental structure and immunopathology. J Theor Biol 221:349–378

    Article  MathSciNet  Google Scholar 

  • Browne CJ, Pilyugin SS (2012) Periodic multidrug therapy in a within-host virus model. Bull Math Biol 74:562–589

    Article  MathSciNet  Google Scholar 

  • Browne CJ, Pilyugin SS (2016) Minimizing \({\cal{R}_0}\) for in-host virus model with periodic combination antiviral therapy. Discrete Contin Dyn Syst Ser B 21:3315–3330

    Article  MathSciNet  Google Scholar 

  • Chen SS, Cheng CY, Takeuchi Y (2016) Stability analysis in delayed within-host viral dynamics with both viral and cellular infections. J Math Anal Appl 442:642–672

    Article  MathSciNet  Google Scholar 

  • Cheng CY, Dong Y, Takeuchi Y (2018) An age-structured virus model with two routs of infection in heterogeneous environments. Nonlinear Anal RWA 39:464–491

    Article  Google Scholar 

  • Cheynier R, Henrichwark S, Hadida F, Pelletier E, Oksenhendler E, Autran B, Wain-Hobson S (1994) HIV and T cell expansion in splenic white pulps is accompanied by infiltrationof HIV-specific cytotoxic T lymphocytes. Cell 78:373–387

    Article  Google Scholar 

  • Costiniuk CT, Jenabian MA (2014) Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. J Gen Virol 95:2346–2355

    Article  Google Scholar 

  • Culshaw RV, Ruan S, Webb G (2003) A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. J Math Biol 46:425–444

    Article  MathSciNet  Google Scholar 

  • De Boer RJ, Ribeiro RM, Perelson AS (2010) Current estimates for HIV-1 production imply rapid viral clearance in lymphoid tissues. PLoS Comput Biol 6:e1000906

    Article  MathSciNet  Google Scholar 

  • De Leenheer P (2009) Within-host virus models with periodic antiviral therapy. Bull Math Biol 71:189–210

    Article  MathSciNet  Google Scholar 

  • d’Onofrio A (2005) Periodically varying antiviral therapies: conditions for global stability of the virus free state. Appl Math Comput 168:945–953

    MathSciNet  MATH  Google Scholar 

  • Dixit NM, Perelson AS (2004) Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J Theor Biol 226:95–109

    Article  MathSciNet  Google Scholar 

  • Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Global burden of tuberculosis-estimated incidence, prevalence, and mortality by country. JAMA 282:677–86

    Article  Google Scholar 

  • Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL Jr, Haussinger D, Diago M, Carosi G, Dhumeaux D, Craxi A, Lin A, Hoffman J, Yu J (2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347:975–982

    Article  Google Scholar 

  • Fung HB, Stone EA, Piacenti FJ (2002) Tenofovir disoproxil fumarate: a nucleotide reverse transcriptase inhibitor for the treatment of HIV infection. Clin Ther 24:1515–48

    Article  Google Scholar 

  • Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H (2014) Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol 61:S45–S57

    Article  Google Scholar 

  • Graw F, Perelson A (2013) Spatial aspects of HIV infection. In: Ledzewicz U, Schättler H, Friedman A, Kashdan E (eds) Mathematical methods and models in biomedicine. Springer, New York, pp 3–31

    Chapter  Google Scholar 

  • Heath SL, Tew JG, Tew JG, Szakal AK, Burton GF (1995) Follicular dendritic cells and human immunodeficiency virus infectivity. Nature 377:740–744

    Article  Google Scholar 

  • Hlavacek WS, Wofsy C, Perelson AS (1999) Dissociation of HIV-1 from follicular dendritic cells during HAART: mathematical analysis. Proc Natl Acad Sci USA 96:14681–14686

    Article  Google Scholar 

  • Hollinger F, Liang T (2001) Hepatitis B virus. In: Knipe DM et al (eds) Fields virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2971–3036

    Google Scholar 

  • Holmes KK, Sparling PF, Stamm WE, Piot P, Wasserheit JN, Corey L, Cohen MS, Watts DH (eds) (2008) Sexually transmitted diseases, 4th edn. McGraw Hill, Toronto

    Google Scholar 

  • Hübner W, McNerney GP, Chen P, Dale BM, Gordan RE, Chuang FYS, Li XD, Asmuth DM, Huser T, Chen BK (2009) Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323:1743–1747

    Article  Google Scholar 

  • Kepler TB, Perelson AS (1998) Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc Natl Acad Sci USA 95:11514–11519

    Article  Google Scholar 

  • Lai X, Zou X (2014) Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission. SIAM J Appl Math 74:898–917

    Article  MathSciNet  Google Scholar 

  • Lai X, Zou X (2015) Modeling cell-to-cell spread of HIV-1 with logistic target cell growth. J Math Anal Appl 426:563–584

    Article  MathSciNet  Google Scholar 

  • Markowitz M, Louie M, Hurley A, Sun E, Di Mascio M (2003) A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J Virol 77:5037–5038

    Article  Google Scholar 

  • McFarren A, Lopez L, Williams DW, Veenstra M, Bryan RA, Goldsmith A, Morgenstern A, Bruchertseifer F, Zolla-Pazner S, Gorny MK, Eugenin EA, Berman JW, Dadachova E (2016) A fully human antibody to gp41 selectively eliminates HIV-infected cells that transmigrated across a model human blood brain barrier. AIDS 30:563–572

    Article  Google Scholar 

  • Mohri H, Bonhoeffer S, Monard S, Perelson AS, Ho DD (1998) Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279:1223–1227

    Article  Google Scholar 

  • Nowak MA, May RM (eds) (2000) Virus dynamics. Oxford University Press, New York

    Google Scholar 

  • Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  Google Scholar 

  • Posny D, Wang J (2014) Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Appl Math Comput 242:473–490

    MathSciNet  MATH  Google Scholar 

  • Qesmi R, Elsaadany S, Heffernan JM, Wu J (2011) A hepatitis B and C virus model with age since infection that exhibits backward bifurcation. SIAM J Appl Math 71:1509–1530

    Article  MathSciNet  Google Scholar 

  • Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, Markowitz M, Moore JP, Perelson AS, Ho DD (1999) Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354:1782–1785

    Article  Google Scholar 

  • Richman DD (ed) (2004) Human immunodeficiency virus. International Medical Press, London

    Google Scholar 

  • Rong L, Feng Z, Perelson AS (2007a) Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull Math Biol 69:2027–2060

    Article  MathSciNet  Google Scholar 

  • Rong L, Feng Z, Perelson AS (2007b) Mathematical analysis of age-structured HIV-1 dynamics with combination antiviral therapy. SIAM J Appl Math 67:731–756

    Article  MathSciNet  Google Scholar 

  • Rong L, Perelson AS (2009) Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol 260:308–331

    Article  MathSciNet  Google Scholar 

  • Shen L, Alireza Rabi S, Sedaghat AR, Shan L, Lai J, Xing S, Siliciano RF (2011) A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci Transl Med 3:91ra63

    Article  Google Scholar 

  • Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M, Zhang H, Zhou Y, Pitt E, Anderson KS, Acosta EP, Siliciano RF (2008) Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14:762–766

    Article  Google Scholar 

  • Spouge JL, Shrager RI, Dimitrov DS (1996) HIV-1 infection kinetics in tissue cultures. Math Biosci 138:1–22

    Article  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. In: Mathematical surveys and monographs, vol 41, AMS, Providence

  • Smith HL, Walman P (eds) (1995) The theory of the chemostat. Cambridge University Press, Cambridge

    Google Scholar 

  • Strain MC, Richman DD, Wong JK, Levine H (2002) Spatiotemporal dynamics of HIV propagation. J Theor Biol 218:85–96

    Article  MathSciNet  Google Scholar 

  • Thieme HR (1992) Convergence results and a Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol 30:755–763

    Article  MathSciNet  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  Google Scholar 

  • Vaidya NK, Rong L (2017) Modeling pharmacodynamics on HIV latent infection: choice of drugs is key to successful cure via early therapy. SIAM J Appl Math 77:1781–1804

    Article  MathSciNet  Google Scholar 

  • Wang W, Zhao XQ (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Differ Eq 20:699–717

    Article  MathSciNet  Google Scholar 

  • Wang Z, Zhao XQ (2013) A within-host virus model with periodic multidrug therapy. Bull Math Biol 75:543–563

    Article  MathSciNet  Google Scholar 

  • Zhang L, Dailey PJ, Gettie A, Blanchard J, Ho DD (2002) The liver is a major organ for clearing simian immunodeficiency virus in rhesus monkeys. J Virol 76:5271–5273

    Article  Google Scholar 

  • Zhang F, Zhao XQ (2007) A periodic epidemic model in a patchy environment. J Math Anal Appl 325:496–516

    Article  MathSciNet  Google Scholar 

  • Zhang C, Zhou S, Groppelli E, Pellegrino P, Williams I, Borrow P, Chain BM, Jolly C (2015) Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection. PLOS Comput Biol 11:e1004179

    Article  Google Scholar 

  • Zhao XQ (ed) (2003) Dynamical systems in population biology. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yuan Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.-S. Chen and C.-Y. Cheng were partially supported by the Ministry of Science and Technology of Taiwan, ROC (Grant Nos. MOST 107-2115-M-003-008 and MOST 107-2115-M-153-005); L. Rong was partially supported by the National Science Foundation Grant DMS-1758290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SS., Cheng, CY. & Rong, L. Within-Host Viral Dynamics in a Multi-compartmental Environment. Bull Math Biol 81, 4271–4308 (2019). https://doi.org/10.1007/s11538-019-00658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00658-1

Keywords

Mathematics Subject Classification

Navigation