Skip to main content

Advertisement

Log in

Control Strategies in Multigroup Models: The Case of the Star Network Topology

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we propose control strategies for multigroup epidemic models. We use compartmental \({\textit{SIRS}}\) models to study the dynamics of n host groups sharing the same source of infection in addition to the transmission among members of the same group. In particular, we consider a model for infectious diseases with free-living pathogens in the environment and a metapopulation model with a central patch. We give the detailed derivation of the target reproduction number under three public health interventions and provide the corresponding biological insights. Moreover, using the next-generation approach, we calculate the basic reproduction numbers associated with subsystems of our models and determine algebraic connections to the target reproduction number of the complete model. The analysis presented here illustrates that understanding the topological structure of the infection process and partitioning it into simple cycles is useful to design and evaluate the control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler B, de la Peña Moctezuma A (2010) Leptospira and leptospirosis. Vet Microbiol 140(3):287–296

    Article  Google Scholar 

  • Arino J, Portet S (2015) Epidemiological implications of mobility between a large urban centre and smaller satellite cities. J Math Biol 71(5):1243–1265

    Article  MathSciNet  Google Scholar 

  • Arino J, Van den Driessche P (2003) A multi-city epidemic model. Math Popul Stud 10(3):175–193

    Article  MathSciNet  Google Scholar 

  • Baca-Carrasco D, Olmos D, Barradas I (2015) A mathematical model for human and animal leptospirosis. J Biol Syst 23(supp01):S55–S65

    Article  MathSciNet  Google Scholar 

  • Baca-Carrasco D, Velasco-Hernández JX (2016) Sex, mosquitoes and epidemics: an evaluation of zika disease dynamics. Bull Math Biol 78(11):2228–2242

    Article  MathSciNet  Google Scholar 

  • Bani-Yaghoub M, Gautam R, Shuai Z, van den Driessche P, Ivanek R (2012) Reproduction numbers for infections with free-living pathogens growing in the environment. J Biol Dyn 6(2):923–940

    Article  Google Scholar 

  • Berman A, Shaked-Monderer N (2012) Non-negative matrices and digraphs. In Meyers, R. A. (ed.), Computational complexity: Theory, techniques, and applications. Springer, pp 2082–2095

  • Chen MI, Ghani AC, Edmunds WJ (2009) A metapopulation modelling framework for gonorrhoea and other sexually transmitted infections in heterosexual populations. J R Soc Interface 6(38):775–791

    Article  Google Scholar 

  • Edwards R, Kim S, van den Driessche P (2010) A multigroup model for a heterosexually transmitted disease. Math Biosci 224(2):87–94

    Article  MathSciNet  Google Scholar 

  • Evangelista KV, Coburn J (2010) Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiol 5(9):1413–1425

    Article  Google Scholar 

  • Ganoza CA, Matthias MA, Collins-Richards D, Brouwer KC, Cunningham CB, Segura ER, Gilman RH, Gotuzzo E, Vinetz JM (2006) Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic leptospira. PLoS Med 3(8):e308

    Article  Google Scholar 

  • Garira W, Mathebula D, Netshikweta R (2014) A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment. Math Biosci 256:58–78

    Article  MathSciNet  Google Scholar 

  • Heesterbeek JAP (2002) A brief history of r0 and a recipe for its calculation. Acta Biotheor 50(3):189–204

    Article  Google Scholar 

  • Holt J, Davis S, Leirs H (2006) A model of leptospirosis infection in an african rodent to determine risk to humans: seasonal fluctuations and the impact of rodent control. Acta Tropica 99(2):218–225

    Article  Google Scholar 

  • Horn RA, Johnson CR (2013) Matrix analysis, 2nd. Cambridge University, New York

    Google Scholar 

  • Keeling M, Tildesley M, House T, Danon L (2013) The mathematics of vaccination. Math Today 49:40–43

    MathSciNet  Google Scholar 

  • Knipl D (2016) A new approach for designing disease intervention strategies in metapopulation models. J Biol Dyn 10(1):71–94

    Article  MathSciNet  Google Scholar 

  • Ko AI, Reis MG, Dourado CMR, Johnson WD, Riley LW, Group SLS (1999) Urban epidemic of severe leptospirosis in Brazil. Lancet 354(9181):820–825

    Article  Google Scholar 

  • La Salle J, Lefschetz S, Alverson R (1962) Stability by Liapunov’s direct method with applications. Phys Today 15:59

    Article  Google Scholar 

  • Leirs H, Stenseth NC, Nichols JD, Hines JE, Verhagen R, Verheyen W (1997) Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389(6647):176

    Article  Google Scholar 

  • Martcheva M (2015) Introduction to mathematical epidemiology, vol 61. Springer, Berlin

    Book  Google Scholar 

  • Olmos D, Barradas I, Baca-Carrasco D (2017) On the calculation of \(R_0\) using submodels. Differ Equ Dyn Syst 25(3):481–497

    Article  MathSciNet  Google Scholar 

  • Prüss-Üstün A, Corvalán C (2006) Preventing disease through healthy environments. World Health Organization, Geneva

    Google Scholar 

  • Roberts M, Heesterbeek J (2003) A new method for estimating the effort required to control an infectious disease. Proc R Soc Lond B Biol Sci 270(1522):1359–1364

    Article  Google Scholar 

  • Shuai Z, Heesterbeek J, van den Driessche P (2013) Extending the type reproduction number to infectious disease control targeting contacts between types. J Math Biol 67(5):1067–1082

    Article  MathSciNet  Google Scholar 

  • Shuai Z, Heesterbeek J, van den Driessche P (2015) Erratum to: extending the type reproduction number to infectious disease control targeting contacts between types. J Math Biol 71(1):255–257

    Article  MathSciNet  Google Scholar 

  • Terpstra W (2003) Human leptospirosis: guidance for diagnosis, surveillance and control. World Health Organization, Geneva

    Google Scholar 

  • Tien JH, Earn DJ (2010) Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull Math Biol 72(6):1506–1533

    Article  MathSciNet  Google Scholar 

  • Triampo W, Baowan D, Tang I, Nuttavut N, Wong-Ekkabut J, Doungchawee G (2007) A simple deterministic model for the spread of leptospirosis in Thailand. Int J Biol Med Sci 2:22–26

    Google Scholar 

  • Ullmann L, Langoni H (2011) Interactions between environment, wild animals and human leptospirosis. J Venom Anim Toxins Incl Trop Dis 17(2):119–129

    Article  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    Article  MathSciNet  Google Scholar 

  • Vargas-De-León C (2011) On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. Chaos Solitons Fractals 44(12):1106–1110

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge suggestions from an anonymous editor and a referee that helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Saldaña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldaña, F., Barradas, I. Control Strategies in Multigroup Models: The Case of the Star Network Topology. Bull Math Biol 80, 2978–3001 (2018). https://doi.org/10.1007/s11538-018-0503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0503-6

Keywords

Navigation