Skip to main content

Advertisement

Log in

Impact of Population Recruitment on the HIV Epidemics and the Effectiveness of HIV Prevention Interventions

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mechanistic mathematical models are increasingly used to evaluate the effectiveness of different interventions for HIV prevention and to inform public health decisions. By focusing exclusively on the impact of the interventions, the importance of the demographic processes in these studies is often underestimated. In this paper, we use simple deterministic models to assess the effectiveness of pre-exposure prophylaxis in reducing the HIV transmission and to explore the influence of the recruitment mechanisms on the epidemic and effectiveness projections. We employ three commonly used formulas that correspond to constant, proportional and logistic recruitment and compare the dynamical properties of the resulting models. Our analysis exposes substantial differences in the transient and asymptotic behavior of the models which result in 47 % variation in population size and more than 6 percentage points variation in HIV prevalence over 40 years between models using different recruitment mechanisms. We outline the strong influence of recruitment assumptions on the impact of HIV prevention interventions and conclude that detailed demographic data should be used to inform the integration of recruitment processes in the models before HIV prevention is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas UL, Glaubius R, Mubayi A, Hood G, Mellors JW (2013) Antiretroviral therapy and pre-exposure prophylaxis: combined impact on HIV transmission and drug resistance in South Africa. J Infect Dis 208(2):224–234. doi:10.1093/infdis/jit150

    Article  Google Scholar 

  • Abbas UL, Anderson RM, Mellors JW (2007) Potential impact of antiretroviral chemoprophylaxis on HIV-1 transmission in resource-limited settings. PLoS ONE 2(9):e875

    Article  Google Scholar 

  • Andrew PC, Foss AM, Shafer LA, Nsubuga RN, Vickerman P, Hayes RJ, Watts C, White RG (2011) Attaining realistic and substantial reductions in HIV incidence: model projections of combining microbicide and male circumcision interventions in rural uganda. Sex Transm Infect 87(7):635–639

    Article  Google Scholar 

  • Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta Rémi, Puren A (2005) Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med 2(11):e298

    Article  Google Scholar 

  • Bacaer N, Pretorius C, Auvert B (2010) An age-structured model for the potential impact of generalized access to antiretrovirals on the South African HIV epidemic. Bull Math Biol 72(8):2180–2198

    Article  MathSciNet  MATH  Google Scholar 

  • Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, Tappero JW, Bukusi EA, Cohen CR, Katabira E et al (2012) Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 367(5):399–410

    Article  Google Scholar 

  • Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, Williams CFM, Campbell RT, Ndinya-Achola JO (2007) Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet 369(9562):643–656

    Article  Google Scholar 

  • Becquet R, Ekouevi DK, Arrive E, Stringer JSA, Meda Nicolas, Chaix Marie-Laure, Treluyer JM, Leroy V, Rouzioux C, Blanche S et al (2009) Universal antiretroviral therapy for pregnant and breast-feeding HIV-1-infected women: towards the elimination of mother-to-child transmission of HIV-1 in resource-limited settings. Clin Infect Dis 49(12):1936–1945

    Article  Google Scholar 

  • Berezovsky F, Karev G, Song B, Castillo-Chavez C (2005) A simple epidemic model with surprising dynamics. Math Biosci Eng 2(1):133–152

    MathSciNet  MATH  Google Scholar 

  • Boily MC, Bastos FI, Desai K, Masse B (2004) Changes in the transmission dynamics of the HIV epidemic after the wide-scale use of antiretroviral therapy could explain increases in sexually transmitted infections: Results from mathematical models sexually transmitted diseases. Sex Transm Dis 31(2):100–112

    Article  Google Scholar 

  • Boily MC, Baggaley RF, Wang L, Masse B, White RG, Hayes RJ, Alary M (2009) Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis 9(2):118–129

    Article  Google Scholar 

  • Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA, Leethochawalit M, Chiamwongpaet S, Kitisin P, Natrujirote P, Kittimunkong S, Chuachoowong R, Gvetadze RJ, McNicholl JM, Paxton LA, Curlin ME, Hendrix CW, Vanichseni S (2013) Antiretroviral prophylaxis for HIV infection in injecting drug users in bangkok, thailand (the bangkok tenofovir study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 381(9883):2083–2090. doi:10.1016/S0140-6736(13)61127-7

    Article  Google Scholar 

  • Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, Hakim JG, Kumwenda J, Grinsztejn B, Pilotto JHS et al (2011) Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 365(6):493–505

    Article  Google Scholar 

  • Cremin I, Alsallaq R, Dybul M, Piot P, Garnett G, Hallett TB (2013) The new role of antiretrovirals in combination HIV prevention: a mathematical modelling analysis. AIDS 27(3):447–458

    Article  Google Scholar 

  • Desai K, Sansom SL, Ackers ML, Stewart SR, Hall H Irene, Hu Dale J, Sanders Rachel, Scotton Carol R, Soorapanth S, Boily M-C, Garnett GP, McElroy PD (2008) Modeling the impact of HIV chemoprophylaxis strategies among men who have sex with men in the United States: HIV infections prevented and cost-effectiveness. AIDS 22(14):1829–1839

    Article  Google Scholar 

  • Dimitrov D, Boily MC, Mâsse BR, Brown ER (2012) Impact of pill sharing on drug resistance due to a wide-scale oral prep intervention in generalized epidemics. J AIDS Clin Res 5:2

    Google Scholar 

  • Dimitrov DT, Masse B, Boily M-C (2010) Who will benefit from a wide-scale introduction of vaginal microbicides in developing countries? Stat Commun Infect Dis 2:1012 (Article 4)

    MathSciNet  Google Scholar 

  • Dimitrov DT, Boily MC, Baggaley RF, Masse B (2011) Modeling the gender-specific impact of vaginal microbicides on HIV transmission. J Theor Biol 288:9–20

    Article  Google Scholar 

  • Dimitrov DT, Kuang Y, Masse B R (2014) Assessing the impact of HIV interventions on public health: mathematic models must account for changing demographics. JAIDS J Acquir Immune Defic Syndr 66(2):60–62. doi:10.1097/QAI.0b013e3182785638

    Google Scholar 

  • Dimitrov D, Boily M-C, Brown ER, Hallett TB (2013a) Analytic review of modeling studies of arv based prep interventions reveals strong influence of drug-resistance assumptions on the population-level effectiveness. PLoS ONE 8(11):e80927. doi:10.1371/journal.pone.0080927

    Article  Google Scholar 

  • Dimitrov DT, Mâsse BR, Boily M-C (2013b) Beating the placebo in HIV prevention efficacy trials: the role of the minimal efficacy bound. JAIDS J Acquir Immune Defic Syndr 62(1):95–101

    Article  Google Scholar 

  • Eaton JW, Hallett TB (2014) Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence. Proc Nat Acad Sci 111(45):16202–16207

    Article  Google Scholar 

  • Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG (2009) Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373(9657):48–57

    Article  Google Scholar 

  • Grant RM, Lama JR, Anderson PL, McMahan V, Liu Albert Y, Vargas Lorena, Goicochea P, Casapía M, Guanira-Carranza JV, Ramirez-Cardich ME et al (2010) Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 363(27):2587–2599

    Article  Google Scholar 

  • Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya Stephen, Nalugoda F, Kiwanuka N, Moulton LH, Chaudhary MA, Chen MZ et al (2007) Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet 369(9562):657–666

    Article  Google Scholar 

  • Hews S, Eikenberry S, Nagy JD, Kuang Y (2010) Rich dynamics of a Hepatitis B viral infection model with logistic hepatocyte growth. J Math Biol 60:573–590

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang T-W, Kuang Y (2003) Deterministic extinction effect of parasites on host populations. J Math Biol 46(1):17–30

    Article  MathSciNet  MATH  Google Scholar 

  • Juusola JL, Brandeau ML, Owens DK, Bendavid E (2012) The cost-effectiveness of preexposure prophylaxis for HIV prevention in the United States in men who have sex with men. Ann Intern Med 156(8):541–550

    Article  Google Scholar 

  • Kalichman SC, Simbayi LC, Cain D, Jooste S (2009) Heterosexual anal intercourse among community and clinical settings in Cape Town, South Africa. Sex Transm Infect 85(6):411–415

    Article  Google Scholar 

  • Karim QA, Abdool SS, Karim JA, Frohlich AC, Grobler CB, Mansoor LE, Kharsany ABM, Sibeko S, Mlisana KP, Omar Z et al (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329(5996):1168–1174

    Article  Google Scholar 

  • Kato M, Granich R, Bui DD, Tran HV, Nadol Patrick, Jacka David, Sabin K, Suthar AB, Mesquita F, Lo YR, Williams B (2013) The potential impact of expanding antiretroviral therapy and combination prevention in Vietnam: towards elimination of HIV transmission. JAIDS. J Acquir Immune Defic Syndr 63(5):e142–e149. doi:10.1097/QAI.0b013e31829b535b

    Article  Google Scholar 

  • Korobeinikov A (2006) Lyapunov functions and global stability for sir and sirs epidemiological models with non-linear transmission. Bull Math Biol 68(3):615–626

    Article  MathSciNet  MATH  Google Scholar 

  • Morgan D, Mahe C, Mayanja B, Okongo JM, Lubega R, Whitworth JAG (2002) HIV-1 infection in rural Africa: is there a difference in median time to aids and survival compared with that in industrialized countries? AIDS 16(4):597–603

    Article  Google Scholar 

  • Nichols BE, Boucher CAB, van Dijk JH, Thuma PE, Nouwen Jan L, Baltussen R, van de Wijgert J, Sloot PMA, van de Vijver DAMC (2013) Cost-effectiveness of pre-exposure prophylaxis (prep) in preventing HIV-1 infections in rural Zambia: A modeling study. PloS ONE 8(3):e59549

    Article  Google Scholar 

  • Porter K, Zaba B (2004) The empirical evidence for the impact of HIV on adult mortality in the developing world: data from serological studies. AIDS 18:S9–S17

    Article  Google Scholar 

  • Sorensen SW, Sansom SL, Brooks JT, Marks G, Begier Elizabeth M, Buchacz Kate, DiNenno Elizabeth A, Mermin Jonathan H, Kilmarx Peter H (2012) A mathematical model of comprehensive test-and-treat services and HIV incidence among men who have sex with men in the United States. PloS ONE 7(2):e29098

    Article  Google Scholar 

  • Statistics South Africa (2012) Mid-year population estimates, 2011. Stats SA: Statistical release P0302:

  • Supervie V, García-Lerma JG, Heneine W, Blower S (2010) HIV, transmitted drug resistance, and the paradox of preexposure prophylaxis. Proc Natl Acad Sci 107(27):12381–12386

    Article  Google Scholar 

  • Supervie V, Barrett M, Kahn JS, Musuka G, Moeti TL, Busang L, Blower S (2011) Modeling dynamic interactions between pre-exposure prophylaxis interventions & treatment programs: predicting HIV transmission & resistance. Sci Rep 1:185

    Article  Google Scholar 

  • Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, Henderson FL, Pathak SR, Soud FA, Chillag KL, Mutanhaurwa R, Chirwa LI, Kasonde M, Abebe D, Buliva E, Gvetadze RJ, Johnson S, Sukalac T, Thomas VT, Hart C, Johnson JA, Malotte CK, Hendrix CW, Brooks JT (2012) Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med 367(5):423–434

    Article  Google Scholar 

  • UNAIDS (2009) AIDS epidemic update: December 2009. WHO Regional Office Europe

  • Vickerman P, Terris-Prestholt F, Delany S, Kumaranayake L, Rees H, Watts C (2006) Are targeted HIV prevention activities cost-effective in high prevalence settings? Results from a sexually transmitted infection treatment project for sex workers in Johannesburg, South Africa. Sex Transm Dis 30(Suppl 10):S122–S132

    Article  Google Scholar 

  • Wawer Maria J, Gray Ronald H, Sewankambo Nelson K, Serwadda David, Li Xianbin, Laeyendecker Oliver, Kiwanuka Noah, Kigozi Godfrey, Kiddugavu Mohammed, Lutalo Thomas et al (2005) Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis 191(9):1403–1409

    Article  Google Scholar 

  • Wilson David P, Coplan Paul M, Wainberg Mark A, Blower Sally M (2008) The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics. Proc Natl Acad Sci 105(28):9835–9840

    Article  Google Scholar 

  • Zhao Y, Dimitrov DT, Liu H, Kuang Y (2013) Mathematical insights in evaluating state dependent effectiveness of HIV prevention interventions. Bull Math Biol 75:649–675

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dobromir T. Dimitrov.

Additional information

This work is supported in part by NSF DMS-1518529. DTD is partially supported by NIH-UM1 AI068617.

Yuqin Zhao and Daniel T. Wood have contributed equally to this work.

Appendices

Appendix 1: Proofs of Main Results

1.1 Proof of Proposition 1

Positivity and boundedness of the solutions can be easily proved. Then, periodic solutions can be excluded by Dulac’s criteria. Let \(P(S,I):=\frac{dS}{dt}\) and \(Q(S,I):=\frac{dI}{dt}\), then \(\frac{\partial }{\partial S}\frac{P}{SI}+\frac{\partial }{\partial I}\frac{Q}{SI}=-\frac{\varLambda }{S^2I}<0\).

Model (1) with constant recruitment \(f_C(N)\) has two possible steady states \(E_{df}=\left( \frac{1}{\mu }\varLambda ,0\right) \) and \(E^*=\left( \frac{1}{\beta -d}\varLambda ,\frac{1}{\beta -d}(R_0-1)\varLambda \right) \), where \(R_0=\frac{\beta }{\mu +d}\). Notice that \(E^*\) (positive steady state) exists if and only if \(R_0>1\).

The eigenvalues of the Jacobian evaluated at \(E_{df}\) are \(\lambda _1=-\mu <0\) and \(\lambda _2=(\mu +d)(R_0-1)\) which implies that \(E_{df}\) is locally stable when \(R_0<1\) and unstable when \(R_0>1\).

For the eigenvalues of the Jacobian evaluated at \(E^*\), it is true that \(\lambda _1+\lambda _2=(\mu +d)\left( 1-R_0-\frac{\mu }{\mu +d}\right) <0\) and \(\lambda _1\times \lambda _2=(\mu +d)[\beta (R_0-1)^2+\mu R_0(R_0-1)]>0\) which implies that \(E^*\) is locally stable when exists.

Finally by the Poincaré–Bendixson theorem, we have the following results:

  • when \(R_0<1\), \(E_{df}\) is globally stable and \(E^*\) does not exist;

  • when \(R_0>1\), \(E^*\) is globally stable and \(E_{df}\) is unstable.

1.2 Proof of Proposition 2

The positivity of the solutions of Model (1) with proportional recruitment \(f_P(N)\) can be easily proved. The equation for the total population size \(\frac{dN}{dt}=\frac{dS}{dt}+\frac{dI}{dt}=rN-\mu S-(\mu +d)I=(r-\mu )N-dI\le (r-\mu )N\) implies that \(N(t)\rightarrow 0\) extinction if \(r<\mu \). It is clear that the extinction occurs even in the absence of HIV (\(I=0)\) when the first equation of Model (1) becomes \(\frac{dS}{dt}=(r-\mu )S\). Next, we study the case when \(r>\mu \).

We analyze the following fractional form of Model (1) with proportional recruitment \(f_P(N)\):

$$\begin{aligned} \frac{ds}{dt}= & {} [r-(\beta -d)s](1-s)\\ \frac{dN}{dt}= & {} [r-\mu -d(1-s)]N\\ i= & {} 1-s. \end{aligned}$$

Notice that the first equation is independent of N which allow us to study s(t) directly in the biologically feasible region \(\{0 \le s \le 1\}\). Since \(s(0)\in (0,1)\), then \(\lim \limits _{t\rightarrow \infty }s(t)=1\) (and \(\lim \limits _{t\rightarrow \infty }i(t)=0\)) if:

  • \(\beta <d\) or

  • \(\beta >d\) and \(\frac{r}{\beta -d}\ge 1\).

Combined, these two cases imply that if \(\beta <r+d\), then each solution of the fractional model approaches disease-free equilibrium. Under this condition, the population size grows unbounded. Alternatively, if \(\beta >r+d\), all solutions of the fractional model approach the endemic equilibrium with \(\lim \limits _{t\rightarrow \infty }s(t)=\frac{r}{\beta -d}\) and \(\lim \limits _{t\rightarrow \infty }i(t)=1-\frac{r}{\beta -d}\). The equation for the population size N(t) implies that in this case, the population extinction under HIV pressure will be caused if \((\mu +d-r) \beta >(\mu +d)d\). Therefore, the population is endangered only if \(r<\mu +d\) and \(\beta <\frac{(\mu +d)d}{\mu +d-r}\).

1.3 Proof of Proposition 3

The region \(\{S\ge 0,I \ge 0, \, S+I \le K \}\) is positive invariant under Model (1) with logistic recruitment which can be checked by determining the sign of the derivatives on the boundary. Given \(S+I > K\) in \(\{S\ge 0, I \ge 0 \}\), we have \(\frac{dN}{dt}=rN\left( 1-\frac{N}{K}\right) -\mu N-dI \le -\mu N\), and thus, the total population will decrease below carrying capicity. Therefore, we consider only the region \(\{S\ge 0,I \ge 0, \, S+I \le K \}\).

Periodic solutions in the region \(\{S\ge 0,I \ge 0 ,\, S+I \le K\}\) can be excluded by Dulac’s criteria. Let \(P(S,I):=\frac{dS}{dt}\) and \(Q(S,I):=\frac{dI}{dt}\), then \(\frac{\partial }{\partial S}\left( \frac{P}{SI}\right) +\frac{\partial }{\partial I}\left( \frac{Q}{SI}\right) =-\frac{r}{K}\left( \frac{1}{S}+\frac{1}{I}\right) -\frac{r}{S^2}\left( 1-\frac{S+I}{K}\right) <0.\)

The model has three possible steady states:

  1. 1.

    Extinction equilibrium \(E_{\hbox {ext}}=(0, 0)\) which always exist;

  2. 2.

    Disease-free equilibrium \(E_{df}=\left( \frac{r-\mu }{r}K, 0\right) \) which exists for \(r>\mu \) and

  3. 3.

    Endemic equilibrium \(E^*=\frac{r-\mu -d\left( 1-\frac{1}{R_0}\right) }{r}K\left( \frac{1}{R_0},\frac{R_0-1}{R_0}\right) \), where \(R_0=\frac{\beta }{\mu +d}\). It exist if \(R_0>1 \iff \beta > \mu +d \) and \(r>\mu +d\left( 1-\frac{1}{R_0}\right) \). The later is equivalent to \(\beta (\mu +d-r)<(\mu +d)d\) which is true if:

    • \(r>\mu +d\) or

    • \(r<\mu +d\) and \(\beta <\frac{(\mu +d)d}{\mu +d-r}\)

Similar to Proposition 2, we can show that if \(r<\mu \), then the population go extinct (\(N(t)\rightarrow 0\)) and all solutions approach the extinction equilibrium \(E_{\hbox {ext}}\). Next, we assume that \(r>\mu \).

Eigenvalues of the Jacobian matrix at \(E_{df}\) are \(-(r-\mu )<0\) and \(\beta -(\mu +d)\). It implies that when exists \(E_{df}\) is stable when \(R_0<1 \iff \beta < \mu +d\) and unstable otherwise.

Eigenvalues of the Jacobian matrix at \(E^*\) satisfy \(\lambda _1+\lambda _2=-\left[ r-\mu -d\left( 1-\frac{1}{R_0}\right) \right] -\left( 1-\frac{1}{R_0}\right) (\beta -d)<0\) and \(\lambda _1\cdot \lambda _2=\left[ r-\mu -d\left( 1-\frac{1}{R_0}\right) \right] [\beta -(\mu +d)]>0\). It implies that \(E^*\) is stable when exists.

The proof will be completed when the local stability of the extinction equilibrium \(E_{\hbox {ext}}\) is analyzed. We follow an approach similar to one often used in the analysis of ratio-dependent population models (Hews et al. 2010). To avoid singularity at (0, 0), it is studied through the modified model in terms of the fraction of susceptibles \(s=\frac{S}{N}\) and total population size N (note that infected fraction satisfies \(i=\frac{I}{N}=1-s\)):

$$\begin{aligned} \displaystyle \frac{ds}{dt}= & {} \left[ r(1-\frac{N}{K})+(d-\beta )s\right] (1-s)\nonumber \\ \displaystyle \frac{dN}{dt}= & {} \left[ r(1-\frac{N}{K})-\mu -d(1-s)\right] N. \end{aligned}$$
(3)

It possesses two steady states \(E_{1}=(1, 0)\), \(E_{2}=\left( \frac{r}{\beta -d}, 0\right) \) corresponding to \(E_{\hbox {ext}}\).

The Jacobian matrix at \(E_{1}\) has an eigenvalue \(r-\mu >0\) which implies that \(E_{1}\) is unstable. Eigenvalues of the Jacobian matrix at \(E_{2}\) are \(\lambda _1=d+r-\beta \) and \(\lambda _2=-\frac{\mu +d}{\beta -d}(\beta -d-R_0r)\). It implies that \(E_{2}\) is stable if \(\beta >d+r\) and \(\beta >d+R_0r\). As a result, \(E_{\hbox {ext}}\) is stable if \(\beta >\max \{d+r,d+R_0r\}\) and unstable otherwise. Then,

  • when \(R_0<1\) (\(\beta <\mu +d\)), \(E_{\hbox {ext}}\) is unstable since \(\beta <d+r\). In this case, endemic (\(E^*\)) equilibrium does not exist, while the disease-free (\(E_{df}\)) steady state is stable;

  • when \(R_0>1\) (\(\beta >\mu +d\)), \(E_{00}\) is stable if \(\beta >d+R_0r\) ,i.e., when endemic (\(E^*\)) equilibrium does not exist. In this case, the disease-free (\(E_{df}\)) steady state is unstable;

Finally the global stability results in the Proposition follow by Poincaré–Bendixson theorem.

1.4 Proof of Proposition 4

Positivity and boundedness of solutions can be easily proved. Then, \(\frac{dS^p}{dt}\le k\varLambda -\mu S^p\) implies \(\limsup \limits _{t\rightarrow \infty }S^p\le \frac{k\varLambda }{\mu }\) and \(\frac{dS}{dt}\le (1-k)\varLambda -\mu S\) implies \(\limsup \limits _{t\rightarrow \infty }S\le \frac{(1-k)\varLambda }{\mu }\). Therefore, \(\frac{dN}{dt}=\frac{dS^p}{dt}+\frac{dS}{dt}+\frac{dI}{dt}=\varLambda -\mu N-dI\ge \varLambda -(\mu +d)N\) implies \(\liminf \limits _{t\rightarrow \infty }N\ge \frac{\varLambda }{\mu +d}\). Then, in the long term we have \(\frac{S}{N}\le \frac{(1-k)(\mu +d)}{\mu }\), and \(\frac{S^p}{N}\le \frac{k(\mu +d)}{\mu }\), which implies \(\frac{dI}{dt}\le I\left[ \beta \frac{(1-k)(\mu +d)}{\mu }+(1-\alpha _s)\beta \frac{k(\mu +d)}{\mu }-(\mu +d)\right] =I\frac{(\mu +d)^2}{\mu }\left[ \beta \frac{1-k}{\mu +d}+(1-\alpha _s)\beta \frac{k}{\mu +d}-\frac{\mu }{\mu +d}\right] =I\frac{(\mu +d)^2}{\mu }\left( R_0-\frac{\mu }{\mu +d}\right) \). Now if \(R_0<\frac{\mu }{\mu +d}\), then because of the positivity of the solution, we know \(\lim \limits _{t\rightarrow \infty }I=0\). Then, combining this result with the equations in Model (2), implies that \(\lim \limits _{t\rightarrow \infty }S^p=\frac{k\varLambda }{\mu }\) and \(\lim \limits _{t\rightarrow \infty }S=\frac{(1-k)\varLambda }{\mu }\). Thus, global stability of the infection-free steady state \(E_{df}=(\frac{k\varLambda }{\mu },\frac{(1-k)\varLambda }{\mu },0)\) under condition \(R_0<\frac{\mu }{\mu +d}\) is proved. For local stability of \(E_{0}\), we consider the corresponding eigenvalues \(\lambda _1=-\mu <0\), \(\lambda _2=-\mu <0\) and \(\lambda _3=(\mu +d)(R_0-1)\). Therefore, \(E_{df}\) is stable when \(R_0<1\) and unstable when \(R_0>1\).

Now we consider \(E^*\). By setting \(F(I)=0\) and dividing by \(\varLambda ^2 (\mu +d)\), we obtain that \(I^*\) is a root of:

$$\begin{aligned} \begin{array}{lll} \hat{F}(I) &{} \triangleq &{} (R_0-1)+\left( (d-(1-\alpha _s)\beta )-(\mu +d-(1-\alpha _s)\beta )\dfrac{\beta }{\mu +d}-d (R_0-1)\right) \\ &{} &{} \dfrac{I}{\varLambda }- (d-\beta )(d-(1-\alpha _s)\beta )\dfrac{I^2}{\varLambda ^2} \end{array} \end{aligned}$$

Substituting in iN where \(i:=\frac{I}{N}\), and \(N=\frac{\varLambda }{\mu +d i}\) into \(\hat{F}(I)=0\) we notice that \(I^*\) is also a root of:

$$\begin{aligned} \bar{F}(i N)\triangleq & {} \mu (\mu +d)(1-R_0)+\beta \left( \mu + d \alpha _s k-(\beta -\mu -d)(1-\alpha _s) \right) i\\&+\, (1-\alpha _s) \beta ^2 i^2 \end{aligned}$$

Now substituting back in for I and \(N=\dfrac{\varLambda -d I}{\mu }\), we notice that \(I^*\) is a root of:

$$\begin{aligned} \bar{F}(I)= & {} \mu (\mu +d)(1-R_0)+\beta \left( \mu + d \alpha _s k-(\beta -\mu -d)(1-\alpha _s) \right) \dfrac{I}{N}\\&+\, (1-\alpha _s) \beta ^2 \dfrac{I^2}{N^2} \end{aligned}$$

Now we have \(\hat{F}(0)=(R_0-1)\) and \(\hat{F}(\frac{\varLambda }{d})=-\dfrac{(1-\alpha _s)\beta ^2 \mu }{d^2 (\mu +d)}<0\).

Assume \(R_0>1\), then \(\hat{F}(0)>0\) and also \(\beta >d\). Since \(\hat{F}(0)>0\), \(\hat{F}(\dfrac{\varLambda }{d})<0\) and \(\hat{F}\) is a second-order polynomial, we have existence of a unique endemic equilibrium.

Assume \(R_0<1\). Since

$$\begin{aligned} \begin{array}{lll} \mu +d \alpha _s k-(\beta -\mu -d)(1-\alpha _s) &{}\ge &{} \mu +d \alpha _s k - \alpha _s k(\mu +d)\left( \dfrac{1-\alpha _s}{1-\alpha _s k}\right) \\ &{} \ge &{} \alpha _s k(\mu +d)\left( 1-\dfrac{1-\alpha _s}{1-\alpha _s k}\right) >0, \end{array} \end{aligned}$$

we have that \(\bar{F}(I)>0\) for all \(I \in (0,\dfrac{\varLambda }{d})\), and therefore, we have no solution \(I^*\).

Therefore, when \(R_0<1\), there is only the disease-free equilibrium, \(E_{df}\), and whenever \(R_0>1\) there is both the disease-free equilibrium, \(E_{df}\), and the endemic equilibrium, \(E^*\).

Now, we analyze the stability of the endemic equilibrium, \(E^*\). Because of the complexity of the expressions, we will not express the positive steady state explicitly. Now assume that \(R_0=\frac{(1-\alpha _sk)\beta }{\mu +d}>1\).

The Jacobian of the system is:

$$\begin{aligned} J=\left( \begin{array}{ccc} -\dfrac{(I+S)(1-\alpha _s)}{N^2}\beta I-\mu &{} \dfrac{(1-\alpha _s)}{N^2}\beta S^p I &{} -\dfrac{(S^p+S)(1-\alpha _s)}{N^2} \beta S^p \\ \dfrac{1}{N^2}\beta S I &{} -\dfrac{S^p+I}{N^2}\beta I-\mu &{} -\dfrac{ S^p+S}{N^2}\beta S \\ \dfrac{I-(I+S)\alpha _s}{N^2}\beta I &{} \dfrac{I+S^p \alpha _s }{N^2}\beta I &{} \dfrac{(S^p+S)(S+S^p(1-\alpha _s))}{N^2}\beta - (\mu +d) \end{array}\right) . \end{aligned}$$

Using

$$\begin{aligned} P=\left( \begin{array}{ccc} 1 &{} -1 &{} -1 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 \end{array}\right) , \end{aligned}$$

we see that the Jacobian is similar to

$$\begin{aligned} H=P^{-1}JP=\left( \begin{array}{ccc} -\mu &{} 0 &{} -d \\ \dfrac{1}{N^2}\beta S I &{} -\dfrac{1}{N}\beta I-\mu &{} -\dfrac{ 1}{N}\beta S \\ \dfrac{I-(I+S)\alpha _s}{N^2}\beta I &{} \dfrac{\alpha _s}{N}\beta I &{} \dfrac{(S^p-I)(1-\alpha _s)+S}{N}\beta - (\mu +d) \end{array}\right) . \end{aligned}$$

Rewriting H evaluated at the endemic equilibrium using \(p^*:=\frac{S^{p*}}{N^*}\), \(s^*:=\frac{S^*}{N^*}\), \(i^*:=\frac{I^*}{N^*}\), \(N^*=\frac{\varLambda }{\mu +d i^*}\) and \(i^*+p^*+s^*=1\), we obtain:

$$\begin{aligned} H=\left( \begin{array}{ccc} -\mu &{} 0 &{} -d \\ \beta s^* i^* &{} -\beta i^*-\mu &{} -\beta s^* \\ ((s^*+i^*)(1-\alpha _s)-s^*)\beta i^* &{} \alpha _s \beta i^* &{} -(1-\alpha _s)\beta i^* \end{array}\right) \end{aligned}$$

where \(s^*=\dfrac{1}{\alpha _s \beta } (\mu +d-(1-i^*)(1-\alpha _s)\beta )\).

We have the characteristic polynomial:

$$\begin{aligned} f(\lambda )=\lambda ^3+A\lambda ^2+B\lambda +C \end{aligned}$$

where

$$\begin{aligned} A= & {} (2-\alpha _s)\beta i+2\mu ,\\ B= & {} (1-\alpha _s)(\beta i^* +d i^*+ 2 \mu )\beta i^*+ \mu (\beta i^*+\mu )+\alpha _s (\beta -d)\beta s^* i^*\\ C= & {} ( (1-\alpha _s)(d \beta i^{*2} + d \mu i^*+ \mu (\beta i^*+ \mu )) +\alpha _s \mu (\beta -d)s^*)\beta i^*. \end{aligned}$$

Clearly if \(R_0>1\), then \(\beta >d\), which implies that \(A>0,B>0\) and \(C>0\). Also we have that

$$\begin{aligned} \begin{array}{ll} AB-C=&{}3 \mu ^2 \beta i^*+2\mu ^3+\alpha _s^2 \mu \beta ^2 i^{*2}+\alpha _s \mu (\beta -d)\beta i^* s^*\\ &{} +\,\alpha _s(2-\alpha _s)(\beta -d)\beta ^2 i^{*2} s^*\\ &{}+\,(1-\alpha _s)(\mu d i^*+ \beta ^2 i^{*2}+6 \mu \beta i^*+4 \mu ^2)\beta i^*\\ &{} +\,(1-\alpha _s)^2(\mu +(\beta +d)i^*)\beta ^2 i^{*2}>0.\\ \end{array} \end{aligned}$$

Therefore by the Routh–Hurwitz criteria, the endemic equilibria, \(E^*\) is locally stable.

1.5 Proof of Proposition 5

We analyze the fractional model associated with proportional recruitment:

$$\begin{aligned} \frac{dp}{dt}= & {} kr-rp-[(1-\alpha _s)\beta -d]pi\triangleq X(p,i) \end{aligned}$$
(4)
$$\begin{aligned} \frac{di}{dt}= & {} [\beta -(d+r)-\alpha _s\beta p-(\beta -d)i]i\triangleq Y(p,i) \end{aligned}$$
(5)
$$\begin{aligned} s= & {} 1-p-i \end{aligned}$$
(6)
$$\begin{aligned} \frac{dN}{dt}= & {} [r-\mu -di]N. \end{aligned}$$
(7)

Notice that the first two equations of the system (4)–(7) are decoupled from the rest which allow us to study the reduced system (4) and (5).

Positivity of solutions for the fractional system can be easily checked. Further,

$$\begin{aligned} \frac{dp}{dt}+\frac{di}{dt}= & {} kr-rp-\beta pi+\alpha _s pi+dpi+(\beta -d)i-ri-\alpha _s\beta pi-(\beta -d)i^2\\= & {} kr-r(p+i)-\beta pi-(\beta -d)pi+(\beta -d)i-(\beta -d)i^2\\= & {} kr-r(p+i)-\beta pi+(\beta -d)i[1-(p+i)]. \end{aligned}$$

Then at \(p+i=1\), \(\frac{d(p+i)}{dt}=-r+kr-\beta pi=-r(1-k)-\beta pi<0\) implies that \((p+i)(t)\le 1\) for \(t>0\) given that \((p+i)(0)\le 1\).

The periodic solutions for the reduced system, and therefore for the transformed system, can be excluded by Dulac’s criteria: \(\frac{\partial }{\partial p}(\frac{X}{pi})+\frac{\partial }{\partial i}(\frac{Y}{pi})=-\frac{kr}{p^2i}-\frac{\beta -d}{p}<0,\) when given \(\beta -d>0\).

For the reduced system, there are possibly several steady states: \(E_{1}=(k, 0)\) (always exists) and \(E_{2}=(p^*_{\text {lin}},i^*_{\text {lin}}):=(p^*, i^*)\) (positive steady state, existence depends on parameter values).

For \(E_1\), we have eigenvalues \(\lambda _1=-r<0\) and \(\lambda _2=(1-\alpha _s k)\beta -(d+r)\). Therefore, if \((1-\alpha _s k)\beta <(d+r)\), then \(E_1\) is locally stable; if \((1-\alpha _s k)\beta >(d+r)\), then \(E_1\) is unstable.

For \(E_2\), we have \(A{p^*}^2+Bp^*+C=0\) and \(i^*=1-\frac{\alpha _s\beta p^*+r}{\beta -d}\), with \(A=\alpha _s\beta [(1-\alpha _s)\beta -d]\), \(B=-\{(\beta -d-r)[(1-\alpha _s)\beta -d]+(\beta -d)r\}\) and \(C=(\beta -d)kr\). If further \(0< p^*<1\) and \(0< i^*<1\), then \((p^*,i^*)\) exists as a positive steady state.

Notice that \(p^*\in \left( 0, \frac{\beta -(d+r)}{\alpha _s\beta }\right) \) and \(i^*\in \left( 0, \frac{\beta -(d+r)}{\beta -d}\right) \). So we assume that \(\beta > d+r\). Denote \(F(p)=Ap^2+Bp+C\), then we have the following results for F(p) over \(\left( 0, \frac{\beta -(d+r)}{\alpha _s\beta }\right) \): \(F(0)=(\beta -d)kr>0\), and \(F\left( \frac{\beta -(d+r)}{\alpha _s\beta }\right) =-\frac{(\beta -d)r}{\alpha _s\beta }[(1-k\alpha _s)\beta -(d+r)]\). Now if \((1-k\alpha _s)\beta >d+r\), then \(F(0)>0\) and \(F\left( \frac{\beta -(d+r)}{\alpha _s\beta }\right) <0\) implies a unique solution of \(F(p)=0\) over \(\left( 0, \frac{\beta -(d+r)}{\alpha _s\beta }\right) \), because F(p) is a parabolic function.

Now consider the case when \((1-k\alpha _s)\beta <d+r\) (\(\Rightarrow (1-\alpha _s)\beta -d<r\)). If \((1-\alpha _s)\beta \le d\), then \(F(0)>0\) and \(F\left( \frac{\beta -(d+r)}{\alpha _s\beta }\right) >0\) implies no solution of \(F(p)=0\) over \(\left( 0, \frac{\beta -(d+r)}{\alpha _s\beta }\right) \), because F(p) is linear or concave down. If \((1-\alpha _s)\beta > d\), then F(p) is concave up and attains its minimum at \(\hat{p}=\frac{\beta -(d+r)}{2\alpha _s\beta }+\frac{(\beta -d)r}{2\alpha _s\beta [(1-\alpha _s)\beta -d]}>\frac{\beta -(d+r)}{2\alpha _s\beta }+\frac{(\beta -d)r}{2\alpha _s\beta r}>\frac{\beta -(d+r)}{\alpha _s\beta }\). Therefore, if \((1-\alpha _s)\beta > d\), then \(F(0)>0\) and \(F\left( \frac{\beta -(d+r)}{\alpha _s\beta }\right) >0\) implies no solution of \(F(p)=0\) over \(\left( 0, \frac{\beta -(d+r)}{\alpha _s\beta }\right) \), because F(p) is decreasing over \(\left( 0, \frac{\beta -(d+r)}{\alpha _s\beta }\right) \).

Therefore, if \(\beta \ge d+r\), we have a unique solution of \(F(p)=0\) over \(\left( 0, \frac{\beta -(d+r)}{\alpha _s\beta }\right) \) when \((1-k\alpha _s)\beta >d+r\) and no solution over \((0, \frac{\beta -(d+r)}{\alpha _s\beta })\) when \((1-k\alpha _s)\beta <d+r\).

Next, we can show that \(E_2\) is stable when it exists. Notice that the existence of \(E_2\) requires \((1-\alpha _s k)\beta >(d+r)\), when \(E_1\) is unstable. Also, we have

$$\begin{aligned}&kr-rp^*-[(1-\alpha _s)\beta -d]p^*i^*=0\Rightarrow -r-[(1-\alpha _s)\beta -d]i^*=-\frac{kr}{p^*};\\&-[(1-\alpha _s)\beta -d]p^*=-\frac{kr-rp^*}{i^*}, \end{aligned}$$

and

$$\begin{aligned} \beta -(d+r)-\alpha _s\beta p^*-(\beta -d)i^*=0. \end{aligned}$$

And we have the following Jacobian matrix for \(E_2\):

$$\begin{aligned} J(E_2) = \left| \begin{array}{cc} -r-[(1-\alpha _s)\beta -d]i^* &{} -[(1-\alpha _s)\beta -d]p^* \\ -\alpha _s\beta i^* &{} -(\beta -d)i^*+\beta -(d+r)-\alpha _s\beta p^*-(\beta -d)i^* \end{array} \right| . \end{aligned}$$

Then

$$\begin{aligned} J(E_2) =\left| \begin{array}{cc} -\frac{kr}{p^*} &{} -\frac{kr-rp^*}{i^*} \\ -\alpha _s\beta i^* &{} -(\beta -d)i^* \end{array} \right| . \end{aligned}$$

The corresponding eigenvalues satisfy

$$\begin{aligned} \lambda _1+\lambda _2=-\frac{kr}{p^*}-(\beta -d)i^ *<0, \end{aligned}$$

and

$$\begin{aligned} \lambda _1\cdot \lambda _2=\frac{kr}{p^*}(\beta -d)i^*-\alpha _s\beta (kr-rp^*). \end{aligned}$$

Furthermore,

$$\begin{aligned} \lambda _1\cdot \lambda _2= & {} \frac{kr}{p^*}(\beta -d)\left( 1-\frac{\alpha _s\beta p^*+r}{\beta -d}\right) -\alpha _s\beta (kr-rp^*)\\= & {} \frac{r}{p^*}\left[ k(\beta -d-\alpha _s\beta p^*-r)-\alpha _s\beta (k-p^*)p^*\right] \\= & {} \frac{r}{p^*}\left[ \alpha _s\beta {p^*}^2-2\alpha _s\beta kp^*+k(\beta -d-r)\right] . \end{aligned}$$

Therefore, \(\lambda _1\cdot \lambda _2>0\) since \(f(p^*)=\alpha _s\beta {p^*}^2-2\alpha _s\beta kp^*+k(\beta -d-r)>0\). We know that \(f(p^*)\) attains the minimum value f(k) at \(p^*=k\). Now it is sufficient to show that \(f(k)>0\). Since \((1-\alpha _s k)\beta>(d+r)\Rightarrow \beta -d-r>\alpha _sk\beta \), then

$$\begin{aligned} f(k)= & {} \alpha _s\beta k^2-2\alpha _s\beta k^2+k(\beta -d-r)\\= & {} k(\beta -d-r)-\alpha _s\beta k^2\\> & {} k\alpha _sk\beta -\alpha _s\beta k^2\\= & {} 0. \end{aligned}$$

Thus, we have proven that \(E_2\) is stable when it exists, i.e., require \((1-\alpha _s k)\beta >(d+r)\). Further since \((1-\alpha _s k)\beta >(d+r)\) implies \(\beta >d\) (no periodic solutions) and \(E_1\) is unstable, then \(E_2\) is globally stable when it exists.

If \((1-\alpha _s k)\beta <(d+r)\), then \(E_1\) is stable and \(E_2\) does not exist. Further \(\beta >d\) implies no periodic solutions, and therefore, we conclude that \(E_1\) is globally stable provided that \((1-\alpha _s k)\beta <(d+r)\) and \(\beta >d\).

Now, for the original system, similar to Proposition 2, we can show that the unique steady state \(E=(0, 0, 0)\) is globally stable if \(r<\mu \). Next, we will study the cases when \(r>\mu \). We know that when \(\beta >d\), \(E_1=(k,0)\) is globally stable when \((1-k)\beta +k(1-\alpha _s)\beta <d+r\), while \(E_2=(p^*,i^*)\) is globally stable when \((1-k)\beta +k(1-\alpha _s)\beta >d+r\). Then by (6), the total population N(t) either approaches 0 when \(r-\mu -d\lim \limits _{t\rightarrow \infty }i(t)<0\), or blows up when \(r-\mu -d\lim \limits _{t\rightarrow \infty }i(t)>0\). Similarly by (7), the infected population I(t) either approaches 0 when \(\beta (1-\lim \limits _{t\rightarrow \infty }p(t)-\lim \limits _{t\rightarrow \infty }i(t))+(1-\alpha _s)\beta \lim \limits _{t\rightarrow \infty }p(t)-(\mu +d)<0\), or blows up when \(\beta (1-\lim \limits _{t\rightarrow \infty }p(t)-\lim \limits _{t\rightarrow \infty }i(t))+(1-\alpha _s)\beta \lim \limits _{t\rightarrow \infty }p(t)-(\mu +d)>0\). Thus, periodic solutions for (2) do not exist when \(\beta >d\).

Further, if \(r > \mu +d\), then \(r-\mu -d\lim \limits _{t\rightarrow \infty }i(t)>0\) and the population grows unbounded. Now assume that \(\mu<r<\mu +d\). Substituting in \(i^*=1-\dfrac{\alpha _s \beta p^*+r}{\beta -d}\) and \(p^*\) into the above, we derive conditions for population extinction. We obtain

$$\begin{aligned} \beta (1-p^*-i^*)+(1-\alpha _s)\beta p^*-(\mu +d)=0 \end{aligned}$$

which yields \(p^*=\dfrac{(\mu +d)(\beta -d)-r\beta }{d \alpha _s \beta }\). Then, substituting the expression for \(p^*\) into the equation \(A{p^*}^2+Bp^*+C=0\) and dividing out \(\beta -d\) gives us the following conditions for population extinction: if \(\beta >\bar{\beta }\), there is population extinction and if \(\beta <\bar{\beta }\), the population grows unbounded, where \(\bar{\beta }\) is a solution to the equation:

$$\begin{aligned} a \beta ^2+b\beta +c=0 \end{aligned}$$
(8)

with

$$\begin{aligned} a= & {} (r-\mu )(1-\alpha _s)(r-\mu -d)\\ b= & {} d((r-\mu )(\mu +d)(1-\alpha _s)+(r-\mu )\mu +d(r \alpha _s k-\mu ))\\ c= & {} \mu d^2(\mu +d). \end{aligned}$$

Whenever \(\mu<r<\mu +d\), we see that \(a<0\) and \(c>0\). Therefore, by Descartes’ rule of signs, there is exactly one positive solution, namely, \(\bar{\beta }=\dfrac{-\bar{b}-\sqrt{\bar{b}^2-4\bar{a}\bar{c}}}{2\bar{a}}\). Moreover, we have \(\bar{\beta }>\dfrac{r+d}{1-\alpha _s k}\).

1.6 Proof of Proposition 6

The invariance of the biologically feasible region can be easily proved. Given \(S^p+S+I > K\) in \(\{S^p\ge 0,S\ge 0, I \ge 0 \}\), we have \(\frac{dN}{dt}=rN\left( 1-\frac{N}{K}\right) -\mu N-dI \le -\mu N\), and thus, the total population will decrease below carrying capicity. Therefore, we consider only the region \(\{S^p\ge 0,S \ge 0, I \ge 0, \, S^p+S+I \le K \}\). Then, similar to Proposition 2, we can show that the extinction steady state \(E_{\hbox {ext}}\) is globally stable if \(r<\mu \).

We analyze the fractional model associated with logistic recruitment:

$$\begin{aligned} \begin{array}{lcl} \dfrac{dp}{dt} &{} = &{} k r (1-\frac{N}{K})-r(1-\frac{N}{K})p-((1-\alpha _s)\beta -d) p i \\ \dfrac{di}{dt} &{} = &{} ((\beta -d)(1-i)-r(1-\frac{N}{K})-\alpha _s \beta p)i \\ \dfrac{dN}{dt} &{} = &{} (r(1-\frac{N}{K})-\mu - d i)N. \end{array} \end{aligned}$$
(9)

From now on, we assume \(r>\mu \). For the eigenvalues for \(E_{df}\), we have \(\lambda _1+\lambda _2=-r<0\), \(\lambda _1 \cdot \lambda _2=\mu (r-\mu )>0\) and \(\lambda _3=(\mu +d)(R_0-1)\). Therefore, \(E_{df}\) is stable when \(R_0<1\) and unstable when \(R_0>1\).

Next, we prove that when \(\mu<r<\mu +d\), the extinction steady state is stable if \(\beta >\bar{\beta }\) and unstable if \(\beta <\bar{\beta }\), where \(\bar{\beta }\) is a solution of Eq. (8); and that the positive steady state also exists if \(\beta <\bar{\beta }\). Furthermore when \(r>\mu +d\), we prove that the positive steady state exists if \(R_0>1\).

For Model (9), there are possibly several steady states: \(E_{1}=(k, 0, 0)\) (always exists), \(E_{2}=(p^*, i^*, 0)\) (existence depends on parameter values), \(E_{3}=(k, 0, \frac{r-\mu }{r}K)\) and \(E_{4}=(p^*_{\text {log}},i^*_{\text {log}},N^*)\) (existence depends on parameter values). Notice that \(E_{3}\) is equivalent with \(E_{df}=(k\frac{r-\mu }{\mu }K, (1-k)\frac{r-\mu }{\mu }K, 0)\) for (2) and \(E_{4}\) is equivalent with the positive steady state \(E^*\) for (2) when it exists, while \(E_{1}\) and \(E_{2}\) are both corresponding to \(E_{\hbox {ext}}=(0, 0, 0)\) for Model (2). Let us assume that \(r>\mu \).

For \(E_1\), we have eigenvalues \(\lambda _1=-r<0\), \(\lambda _2=(1-\alpha _sk)\beta -(d+r)\) and \(\lambda _3=r-\mu >0\). So \(E_1\) is unstable.

For \(E_2\), we have \(A{p^*}^2+Bp^*+C=0\) and \(i^*=1-\frac{\alpha _s\beta p^*+r}{\beta -d}\), with \(A=\alpha _s\beta [(1-\alpha _s)\beta -d]\), \(B=-\{(\beta -d-r)[(1-\alpha _s)\beta -d]+(\beta -d)r\}\) and \(C=(\beta -d)kr\). If further \(0\le p^*\le 1\) and \(0\le i^*\le 1\), then \((p^*,i^*,0)\) exists as a steady state. This is similar to the case \(E_2=(p^*,i^*)\) in Proposition 5 (with proportional recruitment) when taking \(N^*=0\). We obtain that \(E_2\) is stable whenever \(\mu<r<\mu +d\) and \(\beta >\bar{\beta }\) and unstable otherwise.

For \(E_4=(p^*_{\text {log}},i^*_{\text {log}},N^*):=(p^*,i^*,N^*)\), we have \(A{p^*}^2+Bp^*+C=0\), \(i^*=\frac{\beta -\mu -d-\alpha _s\beta p^*}{\beta }\), \(N^*=\frac{r-\mu -di^*}{r}K\), with \(A=\alpha _s(1-\alpha _s)\beta \), \(B=-[(1-\alpha _s)(\beta -\mu -d)+\mu +k\alpha _sd]\) and \(C=kd\frac{\beta -\mu -d}{\beta }+k\mu \). Therefore, positive steady states may exist but are too complicated to be expressed explicitly.

Notice that \(i^*\in (0, \frac{r-\mu }{d})\) and \(p^*\in \left( \frac{\beta -(\mu +d)-\frac{r-\mu }{d}}{\alpha _s\beta }, \frac{\beta -(\mu +d)}{\alpha _s\beta }\right) \). So we assume that \(\beta > \mu +d\) and \(r>\mu \) so that \(E_4\) may exist as an endemic steady state. Denote \(F(p)=Ap^2+Bp+C\), then we have the following results for F(p) over \((0, \frac{\beta -(\mu +d)}{\alpha _s\beta })\): since \(A>0, B<0\) and \(C>0\), we have

$$\begin{aligned} 0<\dfrac{-B-\varDelta }{2A}<\dfrac{-B+\varDelta }{2A} \end{aligned}$$

where

$$\begin{aligned} \varDelta =\sqrt{B^2-4AC}. \end{aligned}$$
(10)

Since \(F(0)=\dfrac{k(\mu +d)(\beta -d)}{\beta }>0\) and \(F\left( \dfrac{\beta -(\mu +d)}{\alpha _s \beta }\right) =- \dfrac{\mu (\mu +d)}{\alpha _s \beta } (R_0 -1) <0\), then there is only one solution on the interval \(\left( 0,\dfrac{\beta -(\mu +d)}{\alpha _s \beta } \right) \), and we have that when it exists, \(p^*=\dfrac{-B-\varDelta }{2A}\).

Also we have that \(p^*\) is a solution on the interval if and only if

\(F\left( \dfrac{\beta -(\mu +d)-\beta \frac{r-\mu }{d}}{\alpha _s \beta }\right) >0\). That is:

$$\begin{aligned}&\dfrac{(1-\alpha _s)\beta ^2 (r-\mu )^2+d^3\mu -d \beta (r-\mu )(\beta -\mu )(1-\alpha _s)+d \beta \mu (r-\mu )}{d^2 \alpha _s \beta }\\&\qquad +\,\dfrac{d^2(r(1-(1-k)\alpha _s)\beta +\mu (\mu -\beta (2-\alpha _s)))}{d^2 \alpha _s \beta }>0. \end{aligned}$$

Given \(R_0>1\) and \(r>\mu \), we have \(\beta >\dfrac{\mu +d}{1-\alpha _s k}\). This provides the following conditions for existence:

  • \(r > \mu +d\)

  • \(r<\mu +d\) and \(\beta \le \dfrac{(\mu +d)d}{\mu +d-r}\)

  • \(\dfrac{(\mu +d)\mu }{\mu +d k} \le r<\mu +d\) and \(\bar{\beta }>\beta >\dfrac{(\mu +d)d}{\mu +d-r}\)

  • \(r<\dfrac{(\mu +d)\mu }{\mu +d k}\) and \(\bar{\beta }>\beta >\dfrac{(\mu +d)d}{\mu +d-r}\)

where \(\bar{\beta }\) is a solution to the Eq. (8). The above conditions reduce to:

  • \(r > \mu +d\) and \(\beta >\dfrac{\mu +d}{1-\alpha _s k}\)

  • \(\mu<r<\mu +d\) and \(\bar{\beta }>\beta >\dfrac{\mu +d}{1-\alpha _s k}\).

Now consider the case when \(R_0<1\)(\(\Rightarrow \beta <\frac{\mu +d}{1-k\alpha _s}\)). F(p) is concave up and attains its minimum at \(\hat{p}=\frac{\beta -(\mu +d)}{2\alpha _s\beta }+\frac{\mu +k\alpha _sd}{2\alpha _s(1-\alpha _s)\beta }>\frac{\beta -(\mu +d)}{\alpha _s\beta }\), since

$$\begin{aligned}&\frac{\beta -(\mu +d)}{2\alpha _s\beta }+\frac{\mu +k\alpha _sd}{2\alpha _s(1-\alpha _s)\beta }-\frac{\beta -(\mu +d)}{\alpha _s\beta }\\&\qquad =\frac{\mu +k\alpha _sd-(1-\alpha _s)[\beta -(\mu +d)]}{2\alpha _s(1-\alpha _s)\beta }\\&\qquad>\frac{\mu +k\alpha _sd-(1-\alpha _s)[\frac{\mu +d}{1-k\alpha _s}-(\mu +d)]}{2\alpha _s(1-\alpha _s)\beta }\\&\qquad =\frac{(2-\alpha _s-\frac{1-\alpha _s}{1-k\alpha _s})\mu +k\alpha _s(1-\frac{1-\alpha _s}{1-k\alpha _s})d}{2\alpha _s(1-\alpha _s)\beta }>0. \end{aligned}$$

Therefore, \(F(\frac{\beta -(\mu +d)}{\alpha _s\beta })>0\) implies no solution of \(F(p)=0\) over \(\left( \frac{\beta -(\mu +d)-\frac{r-\mu }{d}}{\alpha _s\beta }, \frac{\beta -(\mu +d)}{\alpha _s\beta }\right) \), because F(p) is decreasing over \(\left( \frac{\beta -(\mu +d)-\frac{r-\mu }{d}}{\alpha _s\beta }, \frac{\beta -(\mu +d)}{\alpha _s\beta }\right) \).

Thus, when \(R_0>1\), if either \(r>\mu +d\) or both \(\beta < \bar{\beta }\) and \(\mu<r<\mu +d\), we have a unique solution of \(F(p)=0\) over \(\left( \frac{\beta -(\mu +d)-\frac{r-\mu }{d}}{\alpha _s\beta }, \frac{\beta -(\mu +d)}{\alpha _s\beta }\right) \). Also there is no solution over \(\left( \frac{\beta -(\mu +d)-\frac{r-\mu }{d}}{\alpha _s\beta }, \frac{\beta -(\mu +d)}{\alpha _s\beta }\right) \) whenever either \(R_0<1\) or if \(R_0>1\) we have both \(\mu<r<\mu +d\) and \(\beta > \bar{\beta }\).

Now we give partial results for the stability of \(E_4\). The Jacobian evaluated at \(E_4\) can be expressed as:

$$\begin{aligned} J=\left( \begin{array}{ccc} -\mu -(1-\alpha _s)\beta i^* &{} -((1-\alpha _s)\beta -d)p^* &{} \dfrac{r}{K}(-k+p^*) \\ -\alpha _s \beta i^* &{} -(\beta -d)i^* &{} \dfrac{r}{K}i^* \\ 0 &{} -d N^* &{} -\dfrac{r}{K}N^* \end{array}\right) \end{aligned}$$

which has characteristic polynomial

$$\begin{aligned} f(\lambda )=\lambda ^3+A \lambda ^2+B\lambda +C \end{aligned}$$

where

$$\begin{aligned} A= & {} (\beta -d) i^* + (1-\alpha )\beta i^*+\dfrac{N^* r}{K}+\mu ,\\ B= & {} i^{*} (\beta -d)(i^* \beta (1-\alpha _s)+\mu )+i^* p^* \alpha _s \beta (d-\beta (1-\alpha _s))\\&+\,\dfrac{N^* r}{K} (i^* \beta + i^* \beta (1-\alpha _s)+\mu ), \end{aligned}$$

and

$$\begin{aligned} C=\dfrac{N^* r i^* \beta }{K}(d k \alpha _s + \mu + (i^* -p^* \alpha _s) \beta (1-\alpha _s)). \end{aligned}$$

Given \(R_0>1\) and \(i^* < \frac{r-\mu }{d}\), we have \(A>0\). Substituting in for \(i^*\) and \(p^*\), we obtain:

$$\begin{aligned} C=\dfrac{N^* r i^* \beta }{K}\varDelta >0, \end{aligned}$$

where \(\varDelta \) is as in (10). Therefore, the equilibium is locally stable if and only if \(AB-C>0\). We have the following

$$\begin{aligned} \begin{array}{rcl} AB-C &{}= &{} (i^* (1-\alpha _s)\beta +i^*(\beta -d)+\dfrac{N^* r}{K}+\mu )\\ &{}&{}\times (i^* d(\beta (p^* \alpha _s -i^*(1-\alpha _s))-\beta k \alpha _s-\mu )) \\ &{}&{} +\, \dfrac{N^* r (i^* \beta +i^*(1-\alpha _s)\beta +\mu )}{K}(i^*(1-\alpha _s)\beta +i^*(\beta -d)+\dfrac{N^* r}{K}+\mu )\\ &{}&{} +\, i^* \beta \varDelta (i^*(1-\alpha _s)\beta +i^*(\beta -d)+\mu ). \end{array} \end{aligned}$$

Due to the complexity of the above expression, we have only numerically verified for plausible parameter values, that the equilibrium, \(E_4\), is locally stable whenever it exists.

Now we show that the HIV prevalence associated with Model (2) under logistic and constant recruitment is the same, i.e., \(i^*_{\mathrm {const}} = i^*_{\mathrm {log}}\), whenever both equilibria exist and are stable. Assume \(R_0=\dfrac{(1-\alpha _s k)\beta }{\mu +d}>1.\) We have shown already that with constant recruitment, the infected population, \(I^*\), is a root of:

$$\begin{aligned} \begin{array}{l} \hat{F}(I) \triangleq A I^2 + B I + C \end{array} \end{aligned}$$

where

$$\begin{aligned} \begin{array}{l} A=- (d-\beta )(d-(1-\alpha _s)\beta )\dfrac{1}{\varLambda ^2},\\ B=\left( (d-(1-\alpha _s)\beta )\left( 1-\dfrac{\beta }{\mu +d}\right) -\mu \dfrac{\beta }{\mu +d}-d (R_0-1)\right) \dfrac{1}{\varLambda },\\ C= R_0-1. \end{array} \end{aligned}$$

Next, we calculate \(I^*\). \(R_0>1\) implies that \(\beta>\dfrac{\mu +d}{1-\alpha _s k}>\mu +d>d\). Thus, we have

$$\begin{aligned} \begin{array}{l} d-(1-\alpha _s)\beta<d-\dfrac{(1-\alpha _s)(\mu +d)}{1-\alpha _s k}< d-(\mu +d) = -\mu \end{array} \end{aligned}$$

and therefore, \(A<0\) and \(C>0\). By Descartes’ rule of signs, there is exactly one positive root of \(\hat{F}(I)\). Since \(I^*>0\), we must have that

$$\begin{aligned} \begin{array}{l} I^*=\dfrac{-B-\sqrt{B^2-4 A C}}{2 A}. \end{array} \end{aligned}$$

The total population is given by \(N=\dfrac{\varLambda -d I}{\mu }\), so that

$$\begin{aligned} N^*=\dfrac{\varLambda -dI^*}{\mu }. \end{aligned}$$

Therefore, the HIV prevalence under constant recruitment is

$$\begin{aligned} \begin{array}{l} i^*_{\mathrm {const}}=\dfrac{I^*}{N^*}=\dfrac{\mu I^*}{\varLambda - d I^*}. \\ \end{array} \end{aligned}$$

First, notice that \(\varLambda \) factors out of \(I^*\) and thus will be absent in the final expression. Substituting in for \(I^*\), we have that after rationalizing the denominator

$$\begin{aligned} \begin{array}{l} i^*_{\mathrm {const}}=\dfrac{(1-\alpha _s)(\beta -\mu -d)-\mu -\alpha _s k d+ \varDelta _{\mathrm {const}}}{2(1-\alpha _s) \beta }, \end{array} \end{aligned}$$

where

$$\begin{aligned} \varDelta _{\mathrm {const}}=\sqrt{\dfrac{\varLambda ^2 (\mu +d)^2}{\beta ^2}(B^2-4AC)}. \end{aligned}$$

We already have shown that the HIV prevalence given logistic growth is

$$\begin{aligned} i^*_{\mathrm {log}}=1-\alpha _s p^*-\dfrac{\mu +d}{\beta }, \end{aligned}$$

where

$$\begin{aligned} p^*= & {} \dfrac{-\bar{B}-\varDelta _{\mathrm {log}}}{2\bar{A}},\\ \varDelta _{\mathrm {log}}= & {} \sqrt{\bar{B}^2-4\bar{A}\bar{C}}, \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l} \bar{A}=\alpha _s(1-\alpha _s)\beta ,\\ \bar{B}=-\left( (1-\alpha _s)(\beta -\mu -d)+\mu +k\alpha _s d\right) ,\\ \bar{C}= k d \dfrac{\beta -\mu -d}{\beta }+k \mu . \end{array} \end{aligned}$$

Substituting \(p^*\) into \(i^*_{\mathrm {log}}\) and simplifying, we obtain

$$\begin{aligned} \begin{array}{l} i^*_{\mathrm {log}}=\dfrac{(1-\alpha _s)(\beta -\mu -d)-\mu -\alpha _s k d+ \varDelta _{\mathrm {log}}}{2(1-\alpha _s) \beta }. \end{array} \end{aligned}$$

It can be checked that \(\varDelta _{\mathrm {const}}=\varDelta _{\mathrm {log}}\), and therefore, \(i^*_{\mathrm {const}}=i^*_{\mathrm {log}}\).

Appendix 2: Demographic Data and Simulations for the Republic of South Africa

Age-structured population data about the Republic of South Africa for year 2001 and from year 2003 to 2011, in thousands, are presented in Table 5. The data have been adapted from Statistics South Africa (Africa 2012). In the table, T(15–49) refers to total population of individuals from age 15 to 49. Similarly, P(15–49) refers to HIV prevalence among people of age 15–49. HIV-T and SUS-T refer to total number of infected and susceptible individuals ages 15–49, respectively.

Parameter values generated from data fitting are listed in Table 6, and the corresponding simulations using fitted parameter values are presented in Figs. 5 and 6.

Table 6 Parameter values generated from data fitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wood, D.T., Kojouharov, H.V. et al. Impact of Population Recruitment on the HIV Epidemics and the Effectiveness of HIV Prevention Interventions. Bull Math Biol 78, 2057–2090 (2016). https://doi.org/10.1007/s11538-016-0211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0211-z

Keywords

Mathematics Subject Classification

Navigation