Skip to main content

Advertisement

Log in

Modeling Interactions Between C\(_{60}\) Antiviral Compounds and HIV Protease

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Fullerenes have generated a great deal of interest in recent years, due to their properties and potential applications in many fields, including medicine. In this paper, we study an antiviral fullerene compound which may be used to treat the human immunodeficiency virus (HIV). We formulate a mathematical model which can describe the interaction energy between the C\(_{60}\) antiviral compounds and the HIV. In particular, this paper predicts the energy and force arising from the interaction between HIV active region and the antiviral molecule which is attached to the external surface of a fullerene C\(_{60}\). These interactions are calculated based on the structure of the antiviral molecules. Our results show that the binding of fullerene C\(_{60}\) to the antiviral molecules increases the efficiency of the compound to prohibit the activity of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • An YZ, Chen CHB, Anderson JL (1996) Sequence-specific modification of guanosine in DNA by a C\(_{60}\)-linked deoxyoligonucleotide: evidence for a non-singlet oxygen mechanism. Tetrahedron 52: 5179–5189

  • Azzam T, Domb AJ (2004) Current developments in gene transfection agents. Curr Drug Deliv 1:165–193

  • Bakry R, Vallant RM, Najam ul Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2(4):639–649

    Google Scholar 

  • Barre-Sinoussi F, Chermann JC (1983) Isolation of a t-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  Google Scholar 

  • Bedrov D, Smith GD, Davande H, Li L (2008) Passive transport of C\(_{60}\) fullerenes through a lipid membrane: a molecular dynamics simulation study. J Phys Chem B 112:2078–2084

    Article  Google Scholar 

  • Blau WJ, Byrne HJ, Cardin DJ, Dennis TJ, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Large infrared nonlinear optical response of C\(_{60}\). Phys Rev Lett 67:1423–1425

    Article  Google Scholar 

  • Coffin J, Haase A, Levy JA (1986) What to call the AIDS virus. Nature 321:10

    Google Scholar 

  • Cottrell LT (1954) The strengths of chemical bonds. Butterworths Scientific Publications, London

    Google Scholar 

  • Cox BJ, Thamwattana N, Hill JM (2006) Mechanics of atoms and fullerenes in single-walled carbon nanotubes. Proc R Soc 463:461–476

    Article  Google Scholar 

  • Cox BJ, Thamwattana N, Hill JM (2008) Mechanics of nanotubes oscillating in carbon nanotube bundles. Proc R Soc 464:691–710

    Article  MATH  Google Scholar 

  • David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor RD, Walton RM (1992) New orientationally ordered low-temperature superstructure in high-purity C\(_{60}\). Phys Rev Lett 69:1065–1068

    Article  Google Scholar 

  • Delmonico FL, Snydman DR (1998) Organ donor screening for infectious diseases. Transplantation 65:603–610

  • Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York

    Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR (2005) Interaction of silver nanoparticles with hiv-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Feuerstein I, Najam ul haq M, Rainer M (2006) Material-enhanced laser desorption/ionization (MELDI) a new protein profiling tool utilizing specific carrier materials for time of flight mass spectrometric analysis. J Am Soc Mass Spectrom 17:1203–1208

    Article  Google Scholar 

  • Fowler PW, Ceulemans A (1995) Electron deficiency of the fullerenes. J Phys Chem 99:508–510

    Article  Google Scholar 

  • Friedman SH, DeCamp DL, Sijbesma RP (1993) Inhibition of the hiv-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc 115:6506–6509

    Article  Google Scholar 

  • Gallo RC, alahuddin SZ, Popovic M (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III). Science 224:500–503

    Article  Google Scholar 

  • Gallo D, Diggs JL, Shell GR, Dailey PJ, Hoffman MN, Riggs JL (1986) Comparison of detection of antibody to the acquired immune deficiency syndrome virus by enzyme immunoassay, immunofluorescence, and western blot methods. J Clin Microbiol 23:1049–1051

    Google Scholar 

  • Gutchina A, Weber IT (1991) Comparative analysis of the sequences and structures of HIV-1 and HIV-2 proteases. Proteins 10:325–339

    Article  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Byron RB (1964) Molecular theory of gases and liquids. Society for industrial and applied mathematics. University of Winsconsin, Madison

    Google Scholar 

  • HuiLi M, Hing-Jie L (2010) Fullerenes as unique nanopharmaceuticals for disease treatment. Chem Sci China J 53:2233–2240

    Article  Google Scholar 

  • Jason RR, Charles SC (1994) Structure-assisted design of nanopeptide human immunodeficiency virus-1 protease inhibitors. Am J Respir Crit Care Med 150:176–182

    Article  Google Scholar 

  • Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem 4:767–779

  • Johnson RD, Meijer G, Bethune DS (1990) C\(_{60}\) has icosahedral symmetry. J Am Chem Soc 112:8983–8984

    Article  Google Scholar 

  • Johnson RD, Bethune DS, Yannoni CS (1992) Anomalous specific heat of C\(_{60}\). Phys Rev B 48:169–171

    Google Scholar 

  • Kotelnikova RA, Bogdanov GN, Frog EC (2003) Nanobionics of pharmacologically active derivatives of fullerene C\(_{60}\). J Nanopart Res 5:561–566

    Article  Google Scholar 

  • Kraetschmer W, Lamb LD, Fostiropoulos K (1990) Solid C\(_{60}\): a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smally RE (1985) C\(_{60}\): buckminsterfullerene. Nature 318: 162–163

  • Krusic PJ, Wasserman E, Keizer PN (1991) Radical reaction of C\(_{60}\). Science 254:1183–1185

    Article  Google Scholar 

  • Marchesan S, Da Ros T, Spalluto G (2005) Anti-HIV properties of cationic fullerene derivatives. Bioorg Med Chem Lett 15:3615–3618

    Article  Google Scholar 

  • Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M (2005) Anti-hiv properties of cationic fullerene derivatives. Bioorg Med Chem Lett 15:3615–3618

    Article  Google Scholar 

  • McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45(8):1712–1722

    Article  Google Scholar 

  • Pauling L (1960) The nature of the chemical bonds. Cornell University Press, Ithaca

    Google Scholar 

  • Poling BE, Praustmetz JM, O’Connell JP (2001) The properties of gases and liquids. Academic Press, New York

    Google Scholar 

  • Rainer Prato M (1997) Fullerenes chemistry for materials science applications. Rapid Mater Chem 7:1097–1109

  • Rainer M, Muhammad NU, Huck CW (2006) Ultra-fast mass fingerprinting by high-affinity capture of peptides and proteins on derivatized poly (glycidyl methacrylate/divinylbenzene) for the analysis of serum and cell lysates. Rapid Commun Mass Spectrom 20:2954–2960

    Article  Google Scholar 

  • Rappi AK, Casewit CJ, Colwell KS, Goddard WA III, Skid WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  • Schinazi RF, Sijbesma RP, Sandrov G, Hill CL, Wuldi F (1993) Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C\(_{60}\) fullerene. Antimicrob Agents Chemother 37(8):1707–1710

    Article  Google Scholar 

  • Schinazi RF, McMillan A, Juodawalkis AS, Pharr J, Sijbesma RP, Sandrov G, Hummelen JC, Boudinot FD, Hill CL, Wuldi F (1994) Anti-human immunodeficiency virus, toxicity in cell culture and tolerance in mammals of a water-soluble fullerene, in: recent advances in the chemistry and physics of fullerene and related materials. Electrochem Soc 94(24):689–696

    Google Scholar 

  • Schuster DI, Wilsona SR, Schinazi RF (1996) Anti-human immunodeficiency virus activity and cytotoxicity of derivatized buckminsterfullerenes. Bioorg Med Chem Lett 6:1253–1256

    Article  Google Scholar 

  • Sijbesma RP, Srdanov G, Wudl F (1993) Synthesis of a fullerene derivative for the inhibition of hiv enzymes. J Am Chem Soc 115:6510–6512

    Article  Google Scholar 

  • Sutton LE (1965) Table of interatomic distances and configuration in molecules and ions. Chemical Society, London

    Google Scholar 

  • Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) Isolation, separation and characterization of the fullerenes C\(_{60}\) and C\(_{70}\): the third form of carbon. J Chem Soc Chem Commun 20:1423–1425

    Article  Google Scholar 

  • Tran-duc T, Thamwattana N (2011) Modeling encapsulation of acetylene molecules into carbon nanotubes. J Phys Condens Matter 23:225302–225310

    Article  Google Scholar 

  • Tycko R, Haddon RC, Dabbagh G, Glarum SH, Douglass DC, Mujsce AM (1991) Molecular dynamics and the phase transition in solid C\(_{60}\). J Phys Chem 95:518

    Article  Google Scholar 

  • Wang W, Guo ZP, Chen Y, Liu T, Jiang L (2006) Influence of generation 2Ű5 of pamam dendrimer on the inhibition of tat peptide/tar rna binding in hiv-1 transcription. Chem Biol Drug Des 68(6):314–318

    Article  Google Scholar 

  • Xu ZP, Zeng QH, Lu GQ (2005) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  Google Scholar 

  • Yamakoshi Y, Umezawa N, Ryu A (2003) Active oxygen species generated from photoexcited fullerene (C\(_{60}\)) as potential medicinal o-blu.2 versus 102. J Am Chem Soc 125:12803–12809

    Article  Google Scholar 

  • Zhu Z, Schuster DI (2003) Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Biochemistry 42:1326–1333

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australian Research council for support through the Discovery Project Scheme. They are also grateful to the provision of an UPA for HA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Al Garalleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Garalleh, H., Thamwattana, N., Cox, B.J. et al. Modeling Interactions Between C\(_{60}\) Antiviral Compounds and HIV Protease. Bull Math Biol 77, 184–201 (2015). https://doi.org/10.1007/s11538-014-0056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0056-2

Keywords

Navigation