Skip to main content

Advertisement

Log in

A Bovine Babesiosis Model with Dispersion

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Bovine Babesiosis (BB) is a tick borne parasitic disease with worldwide over 1.3 billion bovines at potential risk of being infected. The disease, also called tick fever, causes significant mortality from infection by the protozoa upon exposure to infected ticks. An important factor in the spread of the disease is the dispersion or migration of cattle as well as ticks. In this paper, we study the effect of this factor. We introduce a number, \(\mathcal{P}\), a “proliferation index,” which plays the same role as the basic reproduction number \(\mathcal{R}_{0}\) with respect to the stability/instability of the disease-free equilibrium, and observe that \(\mathcal{P}\) decreases as the dispersion coefficients increase. We prove, mathematically, that if \(\mathcal{P}>1\) then the tick fever will remain endemic. We also consider the case where the birth rate of ticks undergoes seasonal oscillations. Based on data from Colombia, South Africa, and Brazil, we use the model to determine the effectiveness of several intervention schemes to control the progression of BB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, L. J. S., Bolker, B. M., Lou, Y., & Nevai, A. L. (2007). Asymptotic profiles of the steady state for an SIS epidemic patch model. SIAM J. Appl. Math., 67, 1283–1309.

    Article  MathSciNet  MATH  Google Scholar 

  • Alonso, M., Arellano-Seta, C., Cerese, V. H., Cordoves, C. O., Guglielmone, A. A., Kessler, R., Mangold, A. J., Nari, A., Patarroyo, J. H., Solari, M. A., Vega, C. A., Vizcaino, O., & Camus, E. (1990). Epidemiology of bovine anaplasmosis and babesiosis in Latin America and the Carribean In United nations, food and agricultural organization committee of experts in haemoparasites for Latin America and Caribbean (pp. 714–725).

    Google Scholar 

  • Aranda Lozano, D. F. (2011). Modeling of parasitic diseases with vector of transmission: toxoplasmosis and babesiosis bovine. PhD thesis, Universidad Politecnica de Valencia, Departamento de matematica Aplicada.

  • Bacaër, N. (2007). Approximation of the basic reproduction number \(\mathcal{R}_{0}\) for vector-borne diseases with seasonality. Bull. Math. Biol., 69, 1067–1091.

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N., & Guernaoui, S. (2006). The epidemic threshold of vector-borne disease with seasonality. J. Math. Biol., 53, 421–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Cuellar, H., Cuellar, A., Chavez, G., Carrique-Mas, J., & Walker, A. (1999). Estudio sobre babesiosis y anaplasmosis en relacion con la carga de garrapatas en terneros lecheros del oriente boliviano. Cent. Trop. Vet. Med., 31(001), 39–46.

    Google Scholar 

  • Dembele, B., Friedman, A., & Yakubu, A.-A. (2009). Malaria model with periodic mosquito birth and death rate. Journal of Biological Dynamics, 3, 430–445.

    Article  MathSciNet  Google Scholar 

  • De Waal, D. T., & Combrink, M. P. (2006). Live vaccines against bovine babesiosis. Vet. Parasitol., 138, 88–96.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, H., & Britton, T. (2012). Mathematical tools for understanding infectious disease dynamics. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Friedman, A. (1964). Partial differential equations of parabolic type. Mineola: Dover. (1992).

    MATH  Google Scholar 

  • Friedman, A. (2013). Epidemiological models with seasonality. In: Lecture notes on mathematical modelling in the life sciences, part 5: Mathematical methods and models in biomedicine (pp. 389–410).

    Chapter  Google Scholar 

  • Friedman, A., & Yakubu, A.-A. (2013). Anthrax epizootic and migration: persistence of extinction. Math. Biosci., 241, 137–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Greenhalgh, D., & Moneim, I. A. (2003). SIRS epidemic model and simulations using different types of seasonal contact rate. Syst. Anal. Model. Simul., 43, 573–600.

    MathSciNet  MATH  Google Scholar 

  • Hegeman, R. (2003). Cattle ranching moves north, west amid drought. New York: Associated Press.

    Google Scholar 

  • Liu, L., Zhao, X.-Q., & Zhou, Y. (2010). A tuberculosis model with seasonality. Bull. Math. Biol., 72, 931–952.

    Article  MathSciNet  MATH  Google Scholar 

  • Lou, Y., & Zha, X.-Q. (2011). A reaction diffusion model with incubation period in the vector population. J. Math. Biol., 62, 543–568.

    Article  MathSciNet  MATH  Google Scholar 

  • Pascual, M., & Dobson, A. (2005). Seasonal patterns of infectious diseases. PLoS Med., 2(1), 18–20.

    Article  Google Scholar 

  • Petzel, A. M. (2005). Cattle fever tick surveillance in Texas. NAHSS Outlook.

    Google Scholar 

  • Rickhotso, B. O., Stoltsz, W. H., Bryson, N. R., & Sommerville, J. E. M. (2005). The impact of 2 dipping systems on endemic stability to bovine babesiosis and anaplasmosis in cattle in 4 communally grazed areas in Limpopo Province, South Africa. J. South Afr. Vet. Assoc., 76(4), 217–223.

    Google Scholar 

  • Rock, R., Jackson, L., De Vos, A., & Jorgensen, W. (2004). Babesiosis cattle. Parasitology, 129, S247–S269.

    Article  Google Scholar 

  • Smith, R. D. (1991). Computer simulation of bovine babesiosis using a spreadsheet age-class model with weekly updates. J. Agric. Entomol., 8(4), 297–308.

    Google Scholar 

  • Solorio-Rivera, J. L., Rodriguez-Vivas, R. I., Perez-Gutierrez, E., & Wagner, G. (1999). Management factors associated with Babesia bovis seroprevalence in cattle from eastern Yucatan-Mexico. Prev. Vet. Med., 40, 261–269.

    Article  Google Scholar 

  • Suarez, C. E., & Noh, S. (2011). Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet. Parasitol., 180, 109–125.

    Article  Google Scholar 

  • Thieme, H. (2009). Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math., 70, 188–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Uribe, O., Arias, H., & Catellanos (1990). Prevalencia de varias entidades patologicas en bovinos del magdalena medio (Colombia). Rev. ICA, Colomb., 25(3), 185–191.

    Google Scholar 

  • Vaidya, N. K., Wang, F.-B., & Zou, X. (2012). Avian influenza dynamics in wild birds with bird mortality and spatial heterogeneous environment. Discrete Contin. Dyn. Syst., Ser. B, 17(8), 2829–2848.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., & Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ., 28, 699–717.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, P., & Zhao, X.-Q. (2007). A periodic epidemic model in patchy environment. J. Math. Anal. Appl., 325, 496–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Zintl, A., Mulcahy, G., Skerrett, H. E., Taylor, S. M., & Gray, J. S. (2003). Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev., 622–636.

Download references

Acknowledgements

This research has been supported in part by the Mathematical Biosciences Institute of The Ohio State University, Department of Homeland Security, DIMACS and CCICADA of Rutgers University and the National Science Foundation under grant DMS 0931642, 0832782, and 1205185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Aziz Yakubu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, A., Yakubu, AA. A Bovine Babesiosis Model with Dispersion. Bull Math Biol 76, 98–135 (2014). https://doi.org/10.1007/s11538-013-9912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9912-8

Keywords

Navigation