Skip to main content
Log in

Network Dynamics Contribute to Structure: Nestedness in Mutualistic Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Both ecological and evolutionary timescales are of importance when considering an ecological system; population dynamics affect the evolution of species traits, and vice versa. Recently, these two timescales have been used to explain structural patterns in host-parasite networks, where the evolution of the manner in which species balance the use of their resources in interactions with each other was examined.

One of these patterns was nestedness, in which the set of parasite species within a particular host forms a subset of those within a more species-rich host. Patterns of both nestedness and anti-nestedness have been observed significantly more often than expected due to chance in host-parasite networks. In contrast, mutualistic networks tend to display a significant degree of nestedness, but are rarely anti-nested. Within networks with different interaction types, therefore, there appears to be a feature promoting non-random structural patterns, such as nestedness and anti-nestedness, depending on the interaction types involved.

Here, we invoke the co-evolution of species trait-values when allocating resources to interactions to explain the structural pattern of nestedness in a mutualistic community. We look at a bipartite, multi-species system, in which the strength of an interaction between two species is determined by the resources that each species invests in that relationship. We then analyze the evolution of these interactions using adaptive dynamics.

We found that the evolution of these interactions, reflecting the trade-off of resources, could be used to accurately predict that nestedness occurs significantly more often than expect due to chance alone in a mutualistic network. This complements previous results applying the same concept to an antagonistic network. We conclude that population dynamics and resource trade-offs could be important promoters of structural patterns in ecological networks of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida-Neto, M., & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw., 26, 173–178.

    Article  Google Scholar 

  • Almeida-Neto, M., Guimarães, P., Guimarães, P. R. Jr., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227–1239.

    Article  Google Scholar 

  • Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373–382.

    Article  Google Scholar 

  • Bascompte, J., & Jordano, P. (2007). Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst., 38, 567–593.

    Article  MATH  Google Scholar 

  • Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proc. Natl. Acad. Sci. USA, 100, 9383–9387.

    Article  Google Scholar 

  • Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018–1020.

    Article  Google Scholar 

  • Bezerra, E. L. S., Machado, I. C., & Mello, M. A. (2009). Pollination networks of oil-flowers: a tiny world within the smallest of all worlds. J. Anim. Ecol., 78, 1096–1101.

    Article  Google Scholar 

  • Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol., 17, 341–346.

    Article  Google Scholar 

  • Brauer, F., & Castillo-Chávez, C. (2001). Mathematical models in population biology and epidemiology (pp. 199–206). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Brauer, F., & Soudack, A. (1985). Mutualism models with non-linear growth rates. Int. J. Control, 41, 1601–1612.

    Article  MathSciNet  MATH  Google Scholar 

  • Carney, J., & Dick, T. (2000). Helminth communities of yellow perch (Perca flavescens (Mitchill)): determinants of pattern. Can. J. Zool., 78, 538–555.

    Article  Google Scholar 

  • Dean, A. (1983). A simple model of mutualism. Am. Nat., 121, 409–417.

    Article  Google Scholar 

  • Dicks, L., Corbet, S., & Pywell, R. (2002). Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol., 71, 32–43.

    Article  Google Scholar 

  • Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol., 34, 579–612.

    Article  MathSciNet  MATH  Google Scholar 

  • Flores, C. O., Meyer, J. R., Valverde, S., Farr, L., & Weitz, J. S. (2011). Statistical structure of host-phage interactions. Proc. Natl. Acad. Sci. USA, 108, E288–E297.

    Article  Google Scholar 

  • Fortuna, M. A., Stouffer, D. B., Olesen, J. M., Jordano, P., Mouillot, D., Krasnov, B. R., Poulin, R., & Bascompte, J. (2010). Nestedness versus modularity in ecological networks: two side of the same coin? J. Anim. Ecol., 79, 811–817.

    Google Scholar 

  • Geritz, S., Kisdi, E., Meszéna, G., & Metz, J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Gillespie, D. T. (1976). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25), 2340–2361.

    Article  Google Scholar 

  • Graham, S. P., Hassan, H. K., Burkett-Cadena, N. D., Guyer, C., & Unnasch, T. R. (2009). Nestedness of ectoparasite–vertebrate host networks. PLoS ONE, 4, 1–8.

    Article  Google Scholar 

  • Guimarães, P. R. Jr., & Guimarães, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environ. Model. Softw., 21, 1512–1513.

    Article  Google Scholar 

  • Guimarães, P. R. Jr., Rico-Gray, V., Furtado do Reis, S., & Thompson, J. N. (2006). Improving the analyses of nestedness for large sets of matrices. Proc. R. Soc. B, 273, 2041–2047.

    Article  Google Scholar 

  • Holland, J. N., DeAngelis, D. L., & Bronstein, J. L. (2002). Population dynamics and mutualism: functional responses of benefits and costs. Am. Nat., 159, 231–244.

    Article  Google Scholar 

  • James, A., Pitchford, J. W., & Plank, M. J. (2012). Disentangling nestedness from models of ecological complexity. Nature, 487, 227–229.

    Article  Google Scholar 

  • Joppa, L. N., & Williams, R. (2011). The influence of single elements on nested community structure. Methods Ecol Evol., 2, 541–549.

    Article  Google Scholar 

  • Joppa, L. N., Montoya, J. M., Solé, R., Sanderson, J., & Pimm, S. L. (2010). On nestedness in ecological networks. Evol. Ecol. Res., 12, 35–46.

    Google Scholar 

  • Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett., 6, 69–81.

    Article  Google Scholar 

  • Jordano, P., Bascompte, J., & Olesen, J. M. (2006). The ecological consequences of complex topology and nested structure in pollination webs. In N. M. Waser & J. Ollerton (Eds.), Plant-pollinator interactions: from specialization to generalization (pp. 173–199). Bristol: University Presses Marketing.

    Google Scholar 

  • Kermack, W., & McKendrick, A. (1927). Contributions to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115, 700–721.

    Article  MATH  Google Scholar 

  • Kisdi, E. (2006). Trade-off geometries and the adaptive dynamics of two co-evolving species. Evol. Ecol. Res., 8, 959–973.

    Google Scholar 

  • Kondoh, M. (2003). Foraging adaption and the relationship between food-web complexity and stability. Science, 299, 1388–1391.

    Article  Google Scholar 

  • Kondoh, M., Kato, S., & Sakato, Y. (2010). Food webs are built up with nested subwebs. Ecology, 91, 3123–3130.

    Article  Google Scholar 

  • Krishna, A., Guimarães, P. R. Jr., Jordano, P., & Bascompte, J. (2008). A neutral-niche theory of nestedness in mutualistic networks. Oikos, 117, 1609–1918.

    Article  Google Scholar 

  • Law, R., Bronstein, J. L., & Ferrière, R. (2001). On mutualists and exploiters: plant-insect coevolution in pollinating seed-parasite systems. J. Theor. Biol., 212, 373–389.

    Article  Google Scholar 

  • Lewinsohn, T. M., Prado, P. I., Jordano, P., Bascompte, J., & Olesen, J. M. (2006). Structure in plant-animal interaction assemblages. Oikos, 113, 174–184.

    Article  Google Scholar 

  • Melián, C. J., & Bascompte, J. (2002). Complex networks: two ways to be robust? Ecol. Lett., 5, 705–708.

    Article  Google Scholar 

  • Melián, C. J., & Bascompte, J. (2004). Food web cohesion. Ecology, 85, 352–358.

    Article  Google Scholar 

  • Metz, J., Geritz, S., Meszéna, G., Jacobs, F., & van Heerwaarden, J. (1996). Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction. In S. van Strien & S. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (pp. 183–231). Amsterdam: North-Holland/Elsevier.

    Google Scholar 

  • McQuaid, C. F., & Britton, N. F. (2013a). Co-evolution of resource trade-offs driving species interactions in a host-parasite network: An exploratory model. Theor. Ecol. doi:10.1007/s12080-013-0179-3.

    Google Scholar 

  • McQuaid, C. F., & Britton, N. F. (2013b). Host-parasite nestedness a result of co-evolving trait values. Ecol. Complex. 13, 53–59.

    Article  Google Scholar 

  • Okuyama, T., & Holland, J. N. (2008). Network structural properties mediate the stability of mutualistic communities. Ecol. Lett., 11, 208–216.

    Article  Google Scholar 

  • Olesen, J. M., Bascompte, J., Elberling, H., & Jordano, P. (2008). Temporal dynamics in a pollination network. Ecology, 89, 1573–1582.

    Article  Google Scholar 

  • Poitrineau, K., Brown, S., & Hochberg, M. (2003). Defence against multiple enemies. J. Evol. Biol., 16, 1319–1327.

    Article  Google Scholar 

  • Poulin, R. (2007). Are there general laws in parasite ecology? Parasitology, 134, 763–776.

    Article  Google Scholar 

  • Saavedra, S., Stouffer, D. B., Uzzi, B., & Bascompte, J. (2011). Strong contributors to network persistence are the most vulnerable to extinction. Nature, 478, 233–235.

    Article  Google Scholar 

  • Santamaría, L., & Rodríguez-Gironés, M. A. (2007). Linkage rules for plant-pollinator networks: trait complementarity or exploitation barriers? PLoS Biol., 5, 354–362.

    Article  Google Scholar 

  • Stang, M., Klinkhamer, P. G., & van der Meijden, E. (2007). Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance? Oecologia, 151, 442–453.

    Article  Google Scholar 

  • Sugihara, G., & Ye, H. (2009). Cooperative network dynamics. Nature, 458, 979–980.

    Article  Google Scholar 

  • Thébault, E., & Fontaine, C. (2008). Does asymmetric specialization differ between mutualistic and trophic networks? Oikos, 117, 555–563.

    Article  Google Scholar 

  • Thébault, E., & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853–856.

    Article  Google Scholar 

  • Ulrich, W., Almeida-Neto, M., & Gotelli, N. J. (2009). A consumer’s guide to nestedness analysis. Oikos, 118, 3–17.

    Article  Google Scholar 

  • Vázquez, D. P., & Aizen, M. A. (2003). Null model analyses of specialization in plant-pollinator interactions. Ecology, 84, 2493–2501.

    Article  Google Scholar 

  • Vázquez, D. P., & Aizen, M. A. (2004). Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology, 85, 1251–1257.

    Article  Google Scholar 

  • Vázquez, D. P., Blüthgen, N., Cagnolo, L., & Chacoff, N. P. (2009). Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot., 103, 1445–1457.

    Article  Google Scholar 

  • Zhang, F., Hui, C., & Terblanche, J. S. (2011). An interaction switch predicts the nested architecture of mutualistic networks. Ecol. Lett., 14, 797–803.

    Article  Google Scholar 

Download references

Acknowledgements

C.F. McQuaid is a Commonwealth Scholar, funded by the Department for International Development, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Finn McQuaid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McQuaid, C.F., Britton, N.F. Network Dynamics Contribute to Structure: Nestedness in Mutualistic Networks. Bull Math Biol 75, 2372–2388 (2013). https://doi.org/10.1007/s11538-013-9896-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9896-4

Keywords

Navigation