Skip to main content
Log in

A Systematic Overview of Harvesting-Induced Maturation Evolution in Predator–Prey Systems with Three Different Life-History Tradeoffs

Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

There are concerns that anthropogenic harvesting may cause phenotypic adaptive changes in exploited wild populations, in particular maturation at a smaller size and younger age. In this paper, we study the evolutionarily stable size at maturation of prey subjected to size-selective harvesting in a simple predator–prey model, taking into account three recognized life-history costs of early maturation, namely reduced fecundity, reduced growth, and increased mortality. Our analysis shows that harvesting large individuals favors maturation at smaller size compared to the unharvested system, independent of life-history tradeoff and the predator’s prey-size preference. In general, however, the evolutionarily stable maturation size can either increase or decrease relative to the unharvested system, depending on the harvesting regime, the life-history tradeoff, and the predator’s preferred size of prey. Furthermore, we examine how the predator population size changes in response to adaptive change in size at maturation of the prey. Surprisingly, in some situations, we find that the evolutionarily stable maturation size under harvesting is associated with an increased predator population size. This occurs, in particular, when early maturation trades off with growth rate. In total, we determine the evolutionarily stable size at maturation and associated predator population size for a total of forty-five different combinations of tradeoff, harvest regime, and predated size class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrams, P. A. (2009). Adaptive changes in prey vulnerability shape the response of predator populations to mortality. Journal of Theoretical Biology, 261(2), 294–304.

    Article  MathSciNet  Google Scholar 

  • Abrams, P. A., & Matsuda, H. (2005). The effect of adaptive change in the prey on the dynamics of an exploited predator population. Canadian Journal of Fisheries and Aquatic Sciences, 62(4), 758–766.

    Article  Google Scholar 

  • Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A., & Ryman, N. (2008). Genetic effects of harvest on wild animal populations. Trends in Ecology & Evolution, 23(6), 327–337.

    Article  Google Scholar 

  • Ashley, M. V., Willson, M. F., Pergams, O. R. W., O’Dowd, D. J., Gende, S. M., & Brown, J. S. (2003). Evolutionarily enlightened management. Biological Conservation, 111(2), 115–123.

    Article  Google Scholar 

  • Baskett, M. L., Levin, S. A., Gaines, S. D., & Dushoff, J. (2005). Marine reserve design and the evolution of size at maturation in harvested fish. Ecological Applications, 15(3), 882–901.

    Article  Google Scholar 

  • Bishop, D. T., & Cannings, C. (1978). A generalized war of attrition. Journal of Theoretical Biology, 70, 85–124.

    Article  MathSciNet  Google Scholar 

  • Coltman, D. W., O’Donoghue, P., Jorgenson, J. T., Hogg, J. T., Strobeck, C., & Festa-Bianchet, M. (2003). Undesirable evolutionary consequences of trophy hunting. Nature, 426(6967), 655–658.

    Article  Google Scholar 

  • Conover, D. O., Munch, S. B., & Arnott, S. A. (2009). Reversal of evolutionary downsizing caused by selective harvest of large fish. Proceedings of the Royal Society B: Biological Sciences.

  • Day, T., Abrams, P. A., & Chase, J. M. (2002). The role of size-specific predation in the evolution and diversification of prey life histories. Evolution, 56(5), 877–887.

    Google Scholar 

  • de Roos, A. M., Boukal, D. S., & Persson, L. (2006). Evolutionary regime shifts in age and size at maturation of exploited fish stocks. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273(1596), 1873–1880.

    Article  Google Scholar 

  • Gårdmark, A., & Dieckmann, U. (2006). Disparate maturation adaptations to size-dependent mortality. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273(1598), 2185–2192.

    Article  Google Scholar 

  • Gårdmark, A., Dieckmann, U., & Lundberg, P. (2003). Life-history evolution in harvested populations: the role of natural predation. Evolutionary Ecology Research, 5, 239–257.

    Google Scholar 

  • Jørgensen, C., Enberg, K., Dunlop, E. S., Arlinghaus, R., Boukal, D. S., Brander, K., Ernande, B., Gårdmark, A., Johnston, F., Matsumura, S., Pardoe, H., Raab, K., Silva, A., Vainikka, A., Dieckmann, U., Heino, M., & Rijnsdorp, A. D. (2007). Ecology: managing evolving fish stocks. Science, 318(5854), 1247–1248.

    Article  Google Scholar 

  • Law, R., & Grey, D. (1989). Evolution of yields from populations with age-specific cropping. Evolutionary Ecology, 3(4), 343–359.

    Article  Google Scholar 

  • Maynard Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246(5427), 15–18.

    Article  Google Scholar 

  • Mertz, G., & Myers, R. A. (1998). A simplified formulation for fish production. Canadian Journal of Fisheries and Aquatic Sciences, 55(2), 478–484.

    Article  Google Scholar 

  • Mylius, S. D., & Diekmann, O. (1995). On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos, 74(2), 218–224.

    Article  Google Scholar 

  • Persson, L., Amundsen, P. A., de Roos, A. M., Klemetsen, A., Knudsen, R., & Primicerio, R. (2007). Culling prey promotes predator recovery–alternative states in a whole-lake experiment. Science, 316(5832), 1743.

    Article  Google Scholar 

  • Poos, J. J., Brännström, Å., & Dieckmann, U. (2011). Harvest-induced maturation evolution under different life-history trade-offs and harvesting regimes. Journal of Theoretical Biology, 279(1), 102–112.

    Article  Google Scholar 

  • Ricker, W. E. (1981). Changes in the average size and average age of Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences, 38(12), 1636–1656.

    Article  Google Scholar 

  • Ricker, W. E. (1995). Trends in the average size of Pacific salmon in Canadian catches. In Canadian special publication of fisheries and aquatic sciences (pp. 593–602).

    Google Scholar 

  • Rijnsdorp, A. D. (1993). Fisheries as a large-scale experiment on life-history evolution: disentangling phenotypic and genetic effects in changes in maturation and reproduction of North Sea plaice, Pleuronectes platessa L. Oecologia, 96(3), 391–401.

    Article  Google Scholar 

  • Roff, D. A. (1992). The evolution of life histories: theory and analysis. London: Chapman & Hall.

    Google Scholar 

  • Rowe, S. (2001). Movement and harvesting mortality of American lobsters (homarus americanus) tagged inside and outside no-take reserves in Bonavista bay, Newfoundland. Canadian Journal of Fisheries and Aquatic Sciences, 58(7), 1336–1346.

    Article  Google Scholar 

  • Thomas, B. (1985). On evolutionarily stable sets. Journal of Mathematical Biology, 22, 105–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Toïgo, C., Servanty, S., Gaillard, J. M., Brandt, S., & Baubet, E. (2008). Disentangling natural from hunting mortality in an intensively hunted wild boar population. The Journal of Wildlife Management, 72(7), 1532–1539.

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the European Marie Curie Research Training Network FishACE (Fisheries-induced Adaptive Changes in Exploited Stocks), funded through the European Community’s Sixth Framework Programme (Contract MRTN-CT-2004-005578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bodin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodin, M., Brännström, Å. & Dieckmann, U. A Systematic Overview of Harvesting-Induced Maturation Evolution in Predator–Prey Systems with Three Different Life-History Tradeoffs. Bull Math Biol 74, 2842–2860 (2012). https://doi.org/10.1007/s11538-012-9783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9783-4

Keywords

Navigation