Skip to main content
Log in

Perturbation Theory in the Catalytic Rate Constant of the Henri–Michaelis–Menten Enzymatic Reaction

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The Henry–Michaelis–Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k 2 of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k 2 small compared to k −1, we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E o and S o , which can be comparable or much different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berberan-Santos, M. N. (2010). A general treatment of Henri–Michaelis–Menten enzyme kinetics: exact series solutions and approximate analytical solutions. MATCH Commun. Math. Comp. Chem., 63, 283.

    MathSciNet  Google Scholar 

  • Borghans, J. A. M., Boer, R. J., & Segel, L. A. (1996). Extending the quasi steady state approximation by changing variables. Bull. Math. Biol., 58, 43–63.

    Article  MATH  Google Scholar 

  • Briggs, G. E., & Haldane, J. B. (1925). A note on the kinetics of enzyme action. Biochem. J., 19, 338–339.

    Google Scholar 

  • Chen, W. W., Niepel, M., & Sorger, P. K. (2010). Classic and contemporary approaches to modeling biochemical reactions. Genes Dev., 24, 1861–1875.

    Article  Google Scholar 

  • Dingee, J. W., & Anton, A. B. (2008). A new perturbation solution to the Michaelis–Menten problem. AIChE J., 54, 1344–1357.

    Article  Google Scholar 

  • Dimicoli, J.-L., Papamichael, E. M., & Sakarellos, C. (1987). Dynamics of elastase peptide complexes a 13C NMR study. Protides Biol. Fluids, 35, 449–452.

    Google Scholar 

  • Dixon, M., & Webb, E. C. (1964). Enzymes (2nd ed., pp. 63–65, 92–94). London: Longman.

    Google Scholar 

  • Fersht, A. R. (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. New York: Freeman.

    Google Scholar 

  • Goh, S. M., Noorani, M. S. M., & Hashim, I. (2010). Introducing variational iteration method to a biochemical reaction model. Nonlinear Anal., Real World Appl., 11, 2264–2272.

    Article  MathSciNet  MATH  Google Scholar 

  • Hashim, I., Chowdhury, M. S. H., & Mawa, S. (2008). On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model. Chaos Solitons Fractals, 36, 823–827.

    Article  MATH  Google Scholar 

  • He, J. H. (2005). Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals, 26, 695–700.

    Article  MATH  Google Scholar 

  • He, J. H. (2007). Variational iteration method—some recent results and new interpretations. J. Comput. Appl. Math., 207, 3–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Henri, V. (1902). Theorie generale de l’action de quelques diastases. C. R. Hebd. Séances Acad. Sci., 135, 916–919.

    Google Scholar 

  • Konermann, L., & Douglas, D. J. (2002). Pre-steady-state kinetics of enzymatic reactions studied by electrospray mass spectroscopy with on-line rapid-mixing techniques. Methods Enzymol., 354, 50–64.

    Article  Google Scholar 

  • Laidler, K. J. (1955). Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem., 33, 1614–1624.

    Article  Google Scholar 

  • Lewin, L. (1981). Polylogarithms and associated functions. New York: North-Holland.

    MATH  Google Scholar 

  • Lymperopoulos, K., Kosmas, M., & Papamichael, E. M. (1998). A formulation of different equations applied in enzyme kinetics. J. Sci. Ind. Res., 57, 604.

    Google Scholar 

  • Marangoni, A. G. (2003). Enzyme kinetics: a modern approach. New York: Wiley Interscience.

    Google Scholar 

  • Michaelis, L., & Menten, M. L. (1913). Die kinetik der invertinwirkung. Biochem. Z., 49, 333–369.

    Google Scholar 

  • Mendes, P. (1993). GESAPI: a software package for modeling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci., 9, 563.

    Google Scholar 

  • Papamichael, E. M., Theodorou, L. G., & Bieth, J. G. (2004). Insight into catalytic mechanism of papain-like cysteine proteinases: the case of D158. Appl. Biochem. Biotechnol., A, 118, 171–175.

    Article  Google Scholar 

  • Savageau, M. A. (1969). Biochemical systems analysis: I. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol., 25, 365–369.

    Article  Google Scholar 

  • Schnell, S., & Mendoza, C. (1997). Closed form solution for time dependent enzyme kinetics. J. Theor. Biol., 187, 207–212.

    Article  Google Scholar 

  • Schnell, S., & Maini, P. K. (2000). Enzyme kinetics at high enzyme concentrations. Bull. Math. Biol., 62, 483–499.

    Article  Google Scholar 

  • Segel, I. (1975). Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state kinetic enzyme systems (pp. 18–29). New York: Wiley, and the relative cited literature of chapter two.

    Google Scholar 

  • Segel, L. A. (1988). On the validity of the steady-state assumption of enzyme kinetics. Bull. Math. Biol., 50, 579–593.

    MathSciNet  MATH  Google Scholar 

  • Segel, L. A., & Slemrod, M. (1989). The quasi-steady-state assumption: a case in perturbation. SIAM Rev., 31, 446–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Senior, S. Z., Mans, L. L., vanGuilder, H. D., Kelly, K. A., Hendrich, M. P., & Elgren, T. E. (2003). Catecholase activity associated with copper-S100B. Biochemistry, 42, 4392–4397.

    Article  Google Scholar 

  • Swoboda, P. A. T. (1957). The kinetics of enzyme action. Biochim. Biophys. Acta, 23, 70–80.

    Article  Google Scholar 

  • Theodorou, L. G., Bieth, J. G., & Papamichael, E. M. (2007). The catalytic mode of cysteine proteinases of papain (C1) family. Bioresour. Technol., 98, 1931–1939.

    Article  Google Scholar 

  • Tzafriri, A. R. (2003). Michaelis–Menten kinetics at high enzyme concentrations. Bull. Math. Biol., 65, 1111–1129.

    Article  Google Scholar 

  • Tzafriri, A. R., & Edelman, E. R. (2007). Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis–Menten constant. J. Theor. Biol., 245, 737–748.

    Article  MathSciNet  Google Scholar 

  • Van Slyke, D. D., & Cullen, G. E. (1914). The mode of action of urease and of enzymes in general. J. Biol. Chem., 19, 141–180.

    Google Scholar 

  • Voet, D., Voet, J. G., & Pratt, C. W. (1999). Fundamentals of biochemistry. New York: Wiley

    Google Scholar 

  • Wong, J. T.-F. (1965). On the steady-state method of enzyme kinetics. J. Am. Chem. Soc., 87, 1788–1793.

    Article  Google Scholar 

  • Zechel, D. L., Konermann, L., Withers, S. G., & Douglas, D. J. (1998). Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry. Biochemistry, 37, 7664–7669.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the unknown referees for their useful and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Bakalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakalis, E., Kosmas, M. & Papamichael, E.M. Perturbation Theory in the Catalytic Rate Constant of the Henri–Michaelis–Menten Enzymatic Reaction. Bull Math Biol 74, 2535–2546 (2012). https://doi.org/10.1007/s11538-012-9761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9761-x

Keywords

Navigation