Skip to main content
Log in

Pattern Formation, Long-Term Transients, and the Turing–Hopf Bifurcation in a Space- and Time-Discrete Predator–Prey System

Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Understanding of population dynamics in a fragmented habitat is an issue of considerable importance. A natural modelling framework for these systems is spatially discrete. In this paper, we consider a predator–prey system that is discrete both in space and time, and is described by a Coupled Map Lattice (CML). The prey growth is assumed to be affected by a weak Allee effect and the predator dynamics includes intra-specific competition. We first reveal the bifurcation structure of the corresponding non-spatial system. We then obtain the conditions of diffusive instability on the lattice. In order to reveal the properties of the emerging patterns, we perform extensive numerical simulations. We pay a special attention to the system properties in a vicinity of the Turing–Hopf bifurcation, which is widely regarded as a mechanism of pattern formation and spatiotemporal chaos in space-continuous systems. Counter-intuitively, we obtain that the spatial patterns arising in the CML are more typically stationary, even when the local dynamics is oscillatory. We also obtain that, for some parameter values, the system’s dynamics is dominated by long-term transients, so that the asymptotical stationary pattern arises as a sudden transition between two different patterns. Finally, we argue that our findings may have important ecological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Allen, L. S. J. (2007). An introduction to mathematical biology. Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Allen, J. C., Schaffer, W. M., & Rosko, D. (1993). Chaos reduces species extinction by amplifying local population noise. Nature, 364, 229–232.

    Article  Google Scholar 

  • Alonso, S., Míguez, D. G., & Sagués, F. (2007). Differential susceptibility to noise of mixed Turing and Hopf modes in a photosensitive chemical medium. Europhys. Lett., 81, 1–8.

    Google Scholar 

  • Andersen, M. (1991). Properties of some density-dependent integrodifference equation population models. Math. Biosci., 104, 135–157.

    Article  MATH  Google Scholar 

  • Banerjee, M., & Petrovskii, S. V. (2010). Self-organized spatial patterns and chaos in a ratio-dependent predator–prey system. Theor. Ecol. doi:10.1007/s12080-010-0073-1 (in press).

    Google Scholar 

  • Baurmann, M., Gross, T., & Feudel, U. (2007). Instabilities in spatially extended predator–prey systems: Spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol., 245, 220–229.

    Article  MathSciNet  Google Scholar 

  • Brindley, J., & Everson, R. M. (1989). Disturbance propagation in Coupled Lattice Maps. Phys. Lett. A, 134, 229–236.

    Article  Google Scholar 

  • Comins, H. N., Hassell, M. P., & May, R. M. (1992). The spatial dynamics of host-parasitoid systems. J. Anim. Ecol., 61, 735–748.

    Article  Google Scholar 

  • Courchamp, F., Clutton-Brock, T., & Grenfell, B. (1999). Inverse density dependence and the Allee effect. TREE, 14, 405–410.

    Google Scholar 

  • Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Deissler, R. J. (1984). One-dimensional strings, random fluctuations, and complex chaotic structures. Phys. Lett. A, 100, 451–454.

    Article  MathSciNet  Google Scholar 

  • Fasham, M. J. R. (1978). The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Ann. Rev., 16, 43–79.

    Google Scholar 

  • Greig-Smith, P. (1979). Pattern in vegetation. J. Ecol., 67, 755–779.

    Article  Google Scholar 

  • Grindrod, P. (1996). The theory and application of reaction diffusion equations (2nd ed.). Oxford: Claredon Press.

    Google Scholar 

  • Hassell, M. P., Comins, H. N., & May, R. M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 353, 255–258.

    Article  Google Scholar 

  • Kaneko, K. (1986). Turbulence in coupled map lattices. Physica D, 18, 475–476.

    Article  MathSciNet  Google Scholar 

  • Kaneko, K. (1989). Spatiotemporal chaos in one- and two-dimensional coupled map lattices. Physica D, 37, 60–82.

    Article  MathSciNet  Google Scholar 

  • Kot, M., & Schaffer, W. M. (1986). Discrete-time growth-dispersal models. Math. Biosci., 80, 109–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Kot, M., Lewis, M. A., & van der Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042.

    Article  Google Scholar 

  • Lefever, R., & Lejeune, O. (1997). On the origin of tiger bush. Bull. Math. Biol., 59, 263–294.

    Article  MATH  Google Scholar 

  • Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.

    Article  Google Scholar 

  • Levin, S. A., & Segel, L. A. (1976). Hypothesis for origin of planktonic patchiness. Nature, 259, 659.

    Article  Google Scholar 

  • Levin, S. A., & Segel, L. A. (1985). Pattern generation in space and aspect. SIAM Rev., 27, 45–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, R.-T., Liaw, S.-S., & Maini, P. K. (2007). Oscillatory Turing patterns in a simple reaction-diffusion system. J. Korean Phys. Soc., 50(1), 234–238.

    Article  Google Scholar 

  • Malchow, H., Petrovskii, S. V., & Venturino, E. (2008). Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulations. London: Chapman & Hall/CRC Press.

    MATH  Google Scholar 

  • Martin, A. P. (2003). Phytoplankton patchiness: The role of lateral stirring and mixing. Progr. Oceanogr., 57, 125–174.

    Article  Google Scholar 

  • Meinhardt, H. (1982). Models of biological pattern formation. London: Academic Press.

    Google Scholar 

  • Meixner, M., De Wit, A., Bose, S., & Scholl, E. (1997). Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys. Rev. E, 55, 6690–6697.

    Article  MathSciNet  Google Scholar 

  • Murray, J. D. (1989). Mathematical biology. Berlin: Springer.

    MATH  Google Scholar 

  • Neubert, M. G., Kot, M., & Lewis, M. A. (1995). Dispersal and pattern formation in a discrete-time predator–prey model. Theor. Popul. Biol., 48, 7–43.

    Article  MATH  Google Scholar 

  • Okubo, A. (1980). Diffusion and ecological problems. Berlin: Springer.

    MATH  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: modern perspectives (2nd ed.). New York: Springer.

    Google Scholar 

  • Pascual, M. (1993). Diffusion-induced chaos in a spatial predator–prey system. Proc. R. Soc. Lond. B, 251, 1–7.

    Article  Google Scholar 

  • Petrovskii, S. V., & Malchow, H. (1999). A minimal model of pattern formation in a prey–predator system. Math. Comput. Model., 29, 49–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Petrovskii, S. V., & Malchow, H. (2001). Wave of chaos: New mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol., 59, 157–174.

    Article  MATH  Google Scholar 

  • Petrovskii, S. V., Li, B.-L., & Malchow, H. (2004). Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex., 1, 37–47.

    Article  Google Scholar 

  • Ricard, M. R., & Mischler, S. (2009). Turing instabilities at Hopf bifurcation. J. Nonlinear Sci., 19, 467–496.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A., & Jackson, J. L. (1972). Dissipative structure: An explanation and an ecological example. J. Theor. Biol., 37, 545–559.

    Article  Google Scholar 

  • Sherratt, J. A., Lewis, M. A., & Fowler, A. C. (1995). Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA, 92, 2524–2528.

    Article  MATH  Google Scholar 

  • Sherratt, J. A., Eagan, B. T., & Lewis, M. A. (1997). Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? Philos. Trans. R. Soc. Lond. B, 352, 21–38.

    Article  Google Scholar 

  • Stephens, P. A., & Sutherland, W. J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation. TREE, 14, 401–405.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37–72.

    Article  Google Scholar 

  • Vastano, J. A., Pearson, J. E., Horsthemke, W., & Swinney, H. L. (1987). Chemical pattern formation with equal diffusion coefficients. Phys. Lett. A, 124, 320–324.

    Article  Google Scholar 

  • White, S. M., & White, K. A. J. (2005). Relating coupled map lattices to integro-difference equations: Dispersal-driven instabilities in coupled map lattices. J. Theor. Biol., 235, 463–475.

    Article  Google Scholar 

  • Yang, L., & Epstein, I. R. (2003). Oscillatory Turing Patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett., 90, 178303(4).

    Google Scholar 

  • Yang, L., Zhabotinsky, A. M., & Epstein, I. R. (2004). Stable squares and other oscillatory Turing patterns in a reaction-diffusion model. Phys. Rev. Lett., 92, 198303(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Petrovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, L.A.D., Mistro, D.C. & Petrovskii, S. Pattern Formation, Long-Term Transients, and the Turing–Hopf Bifurcation in a Space- and Time-Discrete Predator–Prey System. Bull Math Biol 73, 1812–1840 (2011). https://doi.org/10.1007/s11538-010-9593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9593-5

Keywords

Navigation