Skip to main content
Log in

Mathematical Models of Naturally “Morphed” Human Erythrocytes: Stomatocytes and Echinocytes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present two mathematical models that describe human red blood cells (RBCs) with morphologies that are attained naturally under certain patho-physiological conditions, namely stomatocytes and echinocytes. Muñoz San Martín et al. (Bioelectromagnetics 27:521–527, 2006) recently presented models of these shapes based on our previous set of parametric equations (Kuchel and Fackerell, Bull. Math. Biol. 61:209–220, 1999) that involve Jacobi elliptic functions and integrals. Thus, both discocytes and stomatocytes are described. Here, we derived the Cartesian forms of these new equations; and, in addition, present a realistic model of a Type III echinocyte, using prolate spheroids ‘decorating’ a central sphere at the vertices of an internal dodecahedron. The RBC models based on Cartesian equations have been used for representing the shape changes (morphological transformations or “morphing”) that occur in RBCs under various experimental conditions; specifically, when the shape changes have been monitored by nuclear magnetic resonance (NMR) micro-imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NMR:

nuclear magnetic resonance

RBC:

red blood cell

References

  • Abramowitz, M., Stegun, I.A., 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Govt. Print. Off., Washington.

    Google Scholar 

  • Beck, J.S., 1978. Relations between membrane monolayers in some red-cell shape transformations. J. Theor. Biol. 75, 487–501.

    Article  Google Scholar 

  • Bessis, M., 1972. Red-cell shapes—illustrated classification and its rationale. Nouv. Rev. Fr. Hematol. 12, 721–746.

    Google Scholar 

  • Byrd, P.F., Friedman, M.D., 1971. Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • di Biasio, A., Ambrosone, L., Cametti, C., 2009. Numerical simulation of dielectric spectra of aqueous suspensions of non-spheroidal differently shaped biological cells. J. Phys. D 42, 025401.

    Article  Google Scholar 

  • Iglič, A., 1997. A possible mechanism determining the stability of spiculated red blood cells. J. Biomech. 30, 35–40.

    Article  Google Scholar 

  • Kuchel, P.W., Bulliman, B.T., 1988. Expressions for surfaces in disk-cyclide coordinates—derivations using symbolic computation. J. Franklin Inst. 325, 505–508.

    Article  MATH  Google Scholar 

  • Kuchel, P.W., Fackerell, E.D., 1999. Parametric-equation representation of biconcave erythrocytes. Bull. Math. Biol. 61, 209–220.

    Article  Google Scholar 

  • Kuchel, P.W., Bulliman, B.T., Fackerell, E.D., 1987. Bi-cyclide and flat-ring cyclide coordinate surfaces—correction of two expressions. Math. Comput. 49, 607–613.

    MATH  MathSciNet  Google Scholar 

  • Kuzman, D., Svetina, S., Waugh, R.E., Žekš, B., 2004. Elastic properties of the red blood cell membrane that determine echinocyte deformability. Eur. Biophys. J. 33, 1–15.

    Article  Google Scholar 

  • Larkin, T.J., Kuchel, P.W., 2009. Erythrocyte orientational and cell volume effects on NMR q-space analysis: simulations of restricted diffusion. Eur. Biophys. J. 39, 139–148.

    Article  Google Scholar 

  • Lim, H.W.G., Wortis, M., Mukhopadhyay, R., 2002. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. USA 99, 16766–16769.

    Article  Google Scholar 

  • Martino, R., Negri, M., Di Marco, A., 1980. Simple, geometrical model for a typical echinocyte-III. Experientia 36, 302–303.

    Article  Google Scholar 

  • Moon, P., Spencer, D.E., 1953. Some coordinate systems associated with elliptic functions. J. Franklin Inst. 255, 531–543.

    Article  MathSciNet  Google Scholar 

  • Moon, P., Spencer, D.E., 1961. Field Theory for Engineers. Van-Nostrand, Princeton.

    MATH  Google Scholar 

  • Moon, P., Spencer, D.E., 1988. Field Theory Handbook. Including Coordinate Systems, Differential Equations and Their Solutions. Springer, Berlin.

    Google Scholar 

  • Mukhopadhyay, R., Lim, G., Wortis, M., 2002. Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing. Biophys. J. 82, 1756–1772.

    Article  Google Scholar 

  • Muñoz, S., Sebastián, J.L., Sancho, M., Miranda, J.M., 2004. Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields. Bioelectromagnetics 25, 631–633.

    Article  Google Scholar 

  • Muñoz San Martín, S., Sebastián, J.L., Sancho, M., Miranda, J.M., 2003. A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure. Phys. Med. Biol. 48, 1649–1659.

    Article  Google Scholar 

  • Muñoz San Martín, S., Sebastián, J.L., Sancho, M., Álvarez, G., 2006. Modeling normal and altered human erythrocyte shapes by a new parametric equation: application to the calculation of induced transmembrane potentials. Bioelectromagnetics 27, 521–527.

    Article  Google Scholar 

  • Pages, G., Szekely, D., Kuchel, P.W., 2008. Erythrocyte-shape evolution recorded with fast-measurement NMR diffusion-diffraction. J. Magn. Reson. Imaging 28, 1409–1416.

    Article  Google Scholar 

  • Regan, D.G., Kuchel, P.W., 2003. Simulations of NMR-detected diffusion in suspensions of red cells: the “signatures” in q-space plots of various lattice arrangements. Eur. Biophys. J. 31, 563–574.

    Google Scholar 

  • Sebastián, J.L., San Martín, S.M., Sancho, M., Miranda, J.M., Álvarez, G., 2005. Erythrocyte rouleau formation under polarized electromagnetic fields. Phys. Rev. E 72, 031913.

    Article  Google Scholar 

  • Szekely, D., Chapman, B.E., Bubb, W.A., Kuchel, P.W., 2006. Rapid exchange of fluoroethylamine via the rhesus complex in human erythrocytes: 19F NMR magnetization transfer analysis showing competition by ammonia and ammonia analogues. Biochemistry 45, 9354–9361.

    Article  Google Scholar 

  • Vayo, H.W., 1983. Some red-cell geometry. Can. J. Physiol. Pharmacol. 61, 646–649.

    Google Scholar 

  • Waugh, R.E., 1996. Elastic energy of curvature-driven bump formation on red blood cell membrane. Biophys. J. 70, 1027–1035.

    Article  Google Scholar 

  • Wolfram, S. 2008. The Mathematica Book, 7th edn. Wolfram Media/Cambridge University Press, Champaign.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Kuchel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, T.J., Kuchel, P.W. Mathematical Models of Naturally “Morphed” Human Erythrocytes: Stomatocytes and Echinocytes. Bull. Math. Biol. 72, 1323–1333 (2010). https://doi.org/10.1007/s11538-009-9493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9493-8

Navigation