Skip to main content
Log in

Mathematical Model for Spatial Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cdc42, Rac, and Rho are small GTPases known to play a central role in signal transduction to the actin cytoskeleton. These proteins regulate cell motility, by affecting nucleation, uncapping, and depolymerization of actin filaments, and acto-myosin contractility. Studies of crosstalk and mutual feedbacks in these three proteins have led to a number of proposals for their interaction. At the same time, observations of the spatio-temporal dynamics of Rho-family proteins give evidence of spatial polarization and mutual exclusion between Cdc42/Rac and Rho. In this paper, we formulate a mathematical model to account for such observations, based on the known underlying biology of these proteins. We first investigate which of the crosstalk schemes proposed in the literature is consistent with observed dynamics, and then derive a simple model that can correctly describe these dynamics (assuming crosstalk is mediated via Rho GEFs). We show that cooperativity is an essential ingredient in the interactions of the proteins. The co-occurrence of a stable rest state with the possibility of fast spatial segregation can be related to bistability in a set of underlying ODEs in which the inactive forms of these proteins are fixed at a constant level. We show that the fast diffusion of the inactive forms is essential for stabilizing the transition fronts in the PDE formulation of the model, leading to robust spatial polarization, rather than traveling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, D., Feng, Q., Cerione, R.A., 2005. The Cool-2/α-Pix protein mediates a Cdc42-Rac signaling cascade. Curr. Biol. 15, 1–10.

    Article  Google Scholar 

  • Benard, V., Bohl, B.P., Bokoch, G.M., 1999. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204.

    Article  Google Scholar 

  • Benink, H.A., Bement, W.M., 2005. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 168, 429–439.

    Article  Google Scholar 

  • Bishop, A.L., Hall, A., 2000. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255.

    Article  Google Scholar 

  • Boukharov, A.A., Cohen, C.M., 1998. Guanine nucleotide-dependent translocation of RhoA from cytosol to high affinity membrane binding sites in human erythrocytes. Biochem. J. 330, 1391–1398.

    Google Scholar 

  • Caron, E., 2003. Rac signalling: a radical view. Nat. Cell Biol. 5, 185–187.

    Article  Google Scholar 

  • Carr, J., Pego, R.L., 1989. Metastable patterns in solutions of u t =ε 2 u xx f(u). Comm. Pure Appl. Math. 42, 523–576.

    Article  MATH  MathSciNet  Google Scholar 

  • Cinquin, O., Demongeot, J., 2002. Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol. 216, 229–241.

    Article  MathSciNet  Google Scholar 

  • Cross, M.C., Hohenberg, P.C., 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112.

    Article  Google Scholar 

  • Czuchra, A., Wu, X., Meyer, H., Van Hengel, J., Schroeder, T., Geffers, R., Rottner, K., Brakebusch, C., 2005. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol. Biol. Cell 16, 4473–4484.

    Article  Google Scholar 

  • Dawes, A.T., Edelstein-Keshet, L., 2007. Phosphoinositides and rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys. J. 92, 744–768.

    Article  Google Scholar 

  • DerMardirossian, C., Schnelzer, A., Bokoch, G.M., 2004. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 15, 117–127.

    Article  Google Scholar 

  • Edelstein-Keshet, L., 1988. Mathematical Models in Biology. Random House, New York.

    MATH  Google Scholar 

  • Evers, E.E., Zondag, G.C.M., Malliri, A., Price, L.S., Ten Klooster, J.-P., Van Der Kammen, R.A., Collard, J.G., 2000. Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 36, 1269–1274.

    Article  Google Scholar 

  • Ferrell, J.E., Jr., 1996. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem. Sci. 21, 460–466.

    Article  Google Scholar 

  • Ferrell, J.E., Jr., 2002. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148.

    Article  Google Scholar 

  • Gardner, T.S., Cantor, C.R., Collins, J.J., 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342.

    Article  Google Scholar 

  • Giniger, E., 2002. How do Rho family GTPases direct axon growth and guidance? A proposal relating signaling pathways to growth cone mechanics. Differentiation 70, 385–396.

    Article  Google Scholar 

  • Gouzé, J.-L., 1998. Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15.

    Article  MATH  Google Scholar 

  • Iijima, M., Huang, Y.E., Devreotes, P., 2002. Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478.

    Article  Google Scholar 

  • Iron, D., Ward, M.J., 2000. A metastable spike solution for a nonlocal reaction-diffusion model. SIAM J. Appl. Math. 60, 778–802.

    Article  MATH  MathSciNet  Google Scholar 

  • Iron, D., Ward, M.J., 2001. Spike pinning for the Gierer-Meinhardt model. Math. Comput. Simul. 55, 419–431.

    Article  MATH  MathSciNet  Google Scholar 

  • Itoh, R.E., Kurokawa, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., Matsuda, M., 2002. Activation of Rac and Cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell. Biol. 22, 6582–6591.

    Article  Google Scholar 

  • Janetopoulos, C., Ma, L., Devreotes, P.N., Iglesias, P.A., 2004. Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 101, 8951–8956.

    Article  Google Scholar 

  • Jilkine, A., 2005. Modeling the interactions of small GTPases. Master’s thesis, University of British Columbia, Vancouver.

  • Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., Kaibuchi, K., 1996. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248.

    Article  Google Scholar 

  • Kraynov, V.S., Chamberlain, C., Bokoch, G.M., Schwartz, M.A., Slabaugh, S., Hahn, K.M., 2000. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337.

    Article  Google Scholar 

  • Krishnan, J., Iglesias, P.A., 2004. A modeling framework describing the enzyme regulation of membrane lipids underlying gradient perception in Dictyostelium cells. J. Theor. Biol. 229, 85–99.

    Article  MathSciNet  Google Scholar 

  • Kurokawa, K., Itoh, R.E., Yoshizaki, H., Nakamura, Y.O.T., Matsuda, M., 2004. Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol. Biol. Cell 15, 1003–1010.

    Article  Google Scholar 

  • Levchenko, A., Iglesias, P.A., 2002. Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63.

    Google Scholar 

  • Li, Z., Aizenman, C.D., Cline, H.T., 2002. Regulation of Rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33, 741–750.

    Article  Google Scholar 

  • Li, Z., Dong, X., Wang, Z., Liu, W., Deng, N., Ding, Y., Tang, L., Hla, T., Zeng, R., Li, L., Wu, D., 2005. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7, 399–404.

    Article  Google Scholar 

  • Ma, L., Janetopoulos, C., Yang, L., Devreotes, P.N., Iglesias, P.A., 2004. Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in Dictyostelium cells. Biophys. J. 87, 3764–3774.

    Article  Google Scholar 

  • Mackay, D.J.G., Hall, A., 1998. Rho GTPases. J. Biol. Chem. 273, 20685–20688.

    Article  Google Scholar 

  • Marée, A.F.M., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L., 2006. Polarization and movement of keratocytes: a multiscale modeling approach. Bull. Math. Biol. 68, 1169–1211.

    Article  Google Scholar 

  • Matozaki, T., Nakanishi, H., Takai, Y., 2000. Small G-protein networks: their crosstalk and signal cascades. Cell. Signal. 12, 515–524.

    Article  Google Scholar 

  • Meili, R., Firtel, R.A., 2003. Two poles and a compass. Cell 114, 153–156.

    Article  Google Scholar 

  • Meinhardt, H., 1999. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874.

    Google Scholar 

  • Michaelson, D., Silletti, J., Murphy, G., D’Eustachio, P., Rush, M., Philips, M.R., 2001. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126.

    Article  Google Scholar 

  • Miki, H., Takenawa, T., 2003. Regulation of actin dynamics by WASP family proteins. J. Biochem. 134, 309–313.

    Article  Google Scholar 

  • Mitchison, T.J., Cramer, L.P., 1996. Actin-based cell motility and cell locomotion. Cell 84, 371–379.

    Article  Google Scholar 

  • Murray, J.D., 2002. Mathematical Biology I: An Introduction, 3rd edn. Springer, New York.

    MATH  Google Scholar 

  • Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., Hahn, K.M., 2004. Activation of endogenous Cdc42 visualized in living cells. Science 305, 1615–1619.

    Article  Google Scholar 

  • Narang, A., 2006. Spontaneous polarization in eukaryotic gradient sensing: a mathematical model based on mutual inhibition of frontness and backness pathways. J. Theor. Biol. 240, 538–553.

    Article  MathSciNet  Google Scholar 

  • Nobes, C.D., Hall, A., 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.

    Article  Google Scholar 

  • Olofsson, B., 1999. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell. Signal. 11, 545–554.

    Article  Google Scholar 

  • Parent, C.A., Devreotes, P.N., 1999. A cell’s sense of direction. Science 284, 765–770.

    Article  Google Scholar 

  • Pertz, O., Hodgson, L., Klemke, R.L., Hahn, K.M., 2006. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072.

    Article  Google Scholar 

  • Pestonjamasp, K.N., Forster, C., Sun, C., Gardiner, E.M., Bohl, B., Weiner, O., Bokoch, G.M., Glogauer, M., 2006. Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis. Blood 108, 2814–2820.

    Article  Google Scholar 

  • Postma, M., Van Haastert, P.J.M., 2001. A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys. J. 81, 1314–1323.

    Article  Google Scholar 

  • Postma, M., Bosgraaf, L., Loovers, H.M., Van Haastert, P.J.M., 2004. Chemotaxis: signalling modules join hands at front and tail. EMBO Rep. 5, 35–40.

    Article  Google Scholar 

  • Raftopoulou, M., Hall, A., 2004. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32.

    Article  Google Scholar 

  • Ridley, A.J., 2001a. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471–477.

    Article  Google Scholar 

  • Ridley, A.J., 2001b. Rho GTPases and cell migration. J. Cell Sci. 114, 2713–2722.

    Google Scholar 

  • Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D., Hall, A., 1992. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410.

    Article  Google Scholar 

  • Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., Kirschner, M.W., 1999. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231.

    Article  Google Scholar 

  • Sako, Y., Hibino, K., Miyauchi, T., Miyamoto, Y., Ueda, M., Yanagida, T., 2000. Single-molecule imaging of signaling molecules in living cells. Single Mol. 1, 159–163.

    Article  Google Scholar 

  • Sakumura, Y., Tsukada, Y., Yamamoto, N., Ishii, S., 2005. A molecular model for axon guidance based on cross talk between rho GTPases. Biophys. J. 89, 812–822.

    Article  Google Scholar 

  • Sander, E.E., Ten Klooster, J.-P., Van Delft, S., Van Der Kammen, R.A., Collard, J.G., 1999. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022.

    Article  Google Scholar 

  • Srinivasan, S., Wang, F., Glavas, S., Ott, A., Hofmann, F., Aktories, K., Kalman, D., Bourne, H.R., 2003. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385.

    Article  Google Scholar 

  • Stanyon, C.A., Bernard, O., 1999. LIM-kinase1. Int. J. Biochem. Cell Biol. 31, 389–394.

    Article  Google Scholar 

  • Subramanian, K.K., Narang, A., 2004. A mechanistic model for eukaryotic gradient sensing: spontaneous and induced phosphoinositide polarization. J. Theor. Biol. 231, 49–67.

    Article  MathSciNet  Google Scholar 

  • Sun, C.X., Downey, G.P., Zhu, F., Koh, A.L.Y., Thang, H., Glogauer, M., 2004. Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104, 3758–3765.

    Article  Google Scholar 

  • Takai, Y., Sasaki, T., Matozaki, T., 2001. Small GTP-binding proteins. Physiol. Rev. 81, 153–208.

    Google Scholar 

  • Thomas, R., 1981. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: J. della Dora, J. Demongeot, B. Lacolle (Eds.), Numerical methods in the study of critical phenomena. Springer Series in Synergetics, vol. 9, pp. 180–193. Springer, Berlin.

    Google Scholar 

  • Thomas, R., Kaufman, M., 2001. Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos 11, 170–179.

    Article  MATH  MathSciNet  Google Scholar 

  • Tolias, K.F., Hartwig, J.H., Ishihara, H., Shibasaki, Y., Cantley, L.C., Carpenter, C.L., 2000. Type Iα phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr. Biol. 10, 153–156.

    Article  Google Scholar 

  • Turing, A.M., 1952. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237, 37–72.

    Article  Google Scholar 

  • Van Keymeulen, A., Wong, K., Knight, Z.A., Govaerts, C., Hahn, K.M., Shokat, K.M., Bourne, H.R., 2006. To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. J. Cell Biol. 174, 437–445.

    Article  Google Scholar 

  • Van Leeuwen, F.N., Kain, H.E.T., Van Der Kammen, R.A., Michiels, F., Kranenburg, O.W., Collard, J.G., 1997. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807.

    Article  Google Scholar 

  • Verkhovsky, A.B., Svitkina, T.M., Borisy, G.G., 1999. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20.

    Article  Google Scholar 

  • Vidali, L., Chen, F., Cicchetti, G., Ohta, Y., Kwiatkowski, D.J., 2006. Rac1-null mouse embryonic fibroblasts are motile and respond to platelet-derived growth factor. Mol. Biol. Cell 17, 2377–2390.

    Article  Google Scholar 

  • Wedlich-Soldner, R., Altschuler, S., Wu, L., Li, R., 2003. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235.

    Article  Google Scholar 

  • Weiner, O.D., Neilsen, P.O., Prestwich, G.D., Kirschner, M.W., Cantley, L.C., Bourne, H.R., 2002. A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4, 509–513.

    Article  Google Scholar 

  • Wheeler, A.P., Wells, C.M., Smith, S.D., Vega, F.M., Henderson, R.B., Tybulewicz, V.L., Ridley, A.J., 2006. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J. Cell Sci. 119, 2749–2757.

    Article  Google Scholar 

  • Wong, K., Pertz, O., Hahn, K., Bourne, H., 2006. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl. Acad. Sci. U.S.A. 103, 3639–3644.

    Article  Google Scholar 

  • Xu, J., Wang, F., Van Keymeulen, A., Herzmark, P., Straight, A., Kelly, K., Takuwa, Y., Sugimoto, N., Mitchison, T., Bourne, H.R., 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214.

    Article  Google Scholar 

  • Zerial, M., Huber, L.A. (Eds.) 1995. Guidebook to the Small GTPases. Oxford University Press, Oxford.

    Google Scholar 

  • Zhang, B., Zheng, Y., 1998. Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1. Biochemistry 37, 5249–5257.

    Article  Google Scholar 

  • Zheng, Y., 2001. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 26, 724–732.

    Article  Google Scholar 

  • Zondag, G.C.M., Evers, E.E., Ten Klooster, J.-P., Janssen, L., Van Der Kammen, R.A., Collard, J.G., 2000. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J. Cell Biol. 149, 775–782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Jilkine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jilkine, A., Marée, A.F.M. & Edelstein-Keshet, L. Mathematical Model for Spatial Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk. Bull. Math. Biol. 69, 1943–1978 (2007). https://doi.org/10.1007/s11538-007-9200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9200-6

Keywords

Navigation