Skip to main content
Log in

ReeGAN: MRI image edge-preserving synthesis based on GANs trained with misaligned data

  • ORIGINAL ARTICLE
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

As a crucial medical examination technique, different modalities of magnetic resonance imaging (MRI) complement each other, offering multi-angle and multi-dimensional insights into the body’s internal information. Therefore, research on MRI cross-modality conversion is of great significance, and many innovative techniques have been explored. However, most methods are trained on well-aligned data, and the impact of misaligned data has not received sufficient attention. Additionally, many methods focus on transforming the entire image and ignore crucial edge information. To address these challenges, we propose a generative adversarial network based on multi-feature fusion, which effectively preserves edge information while training on noisy data. Notably, we consider images with limited range random transformations as noisy labels and use an additional small auxiliary registration network to help the generator adapt to the noise distribution. Moreover, we inject auxiliary edge information to improve the quality of synthesized target modality images. Our goal is to find the best solution for cross-modality conversion. Comprehensive experiments and ablation studies demonstrate the effectiveness of the proposed method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tiwari A, Srivastava S, Pant M (2020) Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recogn Lett 131:244–260

    Article  Google Scholar 

  2. Zhou T, Fu H, Chen G, Shen J, Shao L (2020) Hi-Net: hybrid-fusion network for multi-modal MR image synthesis. IEEE Trans Med Imaging 39(9):2772–2781

    Article  PubMed  Google Scholar 

  3. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Communications of the ACM 63(11):139–144

    Article  Google Scholar 

  4. Zhan B, Li D, Wu X, Zhou J, Wang Y (2021) Multi-modal MRI image synthesis via GAN with multi-scale gate mergence. IEEE J Biomed Health Inform 26(1):17–26

    Article  Google Scholar 

  5. Zhan B, Zhou L, Li Z, Wu X, Pu Y, Zhou J, Wang Y, Shen D (2022) D2FE-GAN: decoupled dual feature extraction based GAN for MRI image synthesis. Knowl Based Syst 252:109362

    Article  Google Scholar 

  6. Kong L, Lian C, Huang D, Hu Y, Zhou Q et al (2021) Breaking the dilemma of medical image-to-image translation. Adv Neural Inf Process Syst 34:1964–1978

    Google Scholar 

  7. Yu B, Wang Y, Wang L, Shen D, Zhou L (2020) Medical image synthesis via deep learning. Deep Learn Med Image Anal pp 23–44

  8. Torrado-Carvajal A, Herraiz JL, Alcain E, Montemayor AS, Garcia-Canamaque L, Hernandez-Tamames JA, Rozenholc Y, Malpica N (2016) Fast patch-based pseudo-CT synthesis from T1-weighted MR images for PET/MR attenuation correction in brain studies. J Nucl Med 57(1):136–143

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Wei J, Qi Z, Sun Y, Lu Y (2020) Synthesize CT from paired MRI of the same patient with patch-based generative adversarial network. In: Medical imaging 2020: computer-aided diagnosis, vol 11314, pp 919–924. SPIE

  10. Klages P, Benslimane I, Riyahi S, Jiang J, Hunt M, Deasy JO, Veeraraghavan H, Tyagi N (2020) Patch-based generative adversarial neural network models for head and neck MR-only planning. Med Phys 47(2):626–642

    Article  PubMed  Google Scholar 

  11. Roy S, Carass A, Prince JL (2013) Magnetic resonance image example-based contrast synthesis. IEEE Trans Med Imaging 32(12):2348–2363

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jog A, Carass A, Roy S, Pham DL, Prince JL (2015) MR image synthesis by contrast learning on neighborhood ensembles. Med Image Anal 24(1):63–76

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aouadi S, Vasic A, Paloor S, Torfeh T, McGarry M, Petric P, Riyas M, Hammoud R, Al-Hammadi N (2017) Generation of synthetic CT using multi-scale and dual-contrast patches for brain MRI-only external beam radiotherapy. Phys Med 42:174–184

    Article  PubMed  Google Scholar 

  14. Miller MI, Christensen GE, Amit Y, Grenander U (1993) Mathematical textbook of deformable neuroanatomies. Proceedings of the National Academy of Sciences 90(24):11944–11948

    Article  CAS  Google Scholar 

  15. Yang X, Lei Y, Shu HK, Rossi P, Mao H, Shim H, Curran WJ, Liu T (2017) Pseudo CT estimation from MRI using patch-based random forest. In: Medical imaging 2017: image processing, vol 10133, pp 775–782. SPIE

  16. Lei Y, Harms J, Wang T, Tian S, Zhou J, Shu HK, Zhong J, Mao H, Curran WJ, Liu T et al (2019) MRI-based synthetic CT generation using semantic random forest with iterative refinement. Phys Med Biol 64(8):085001

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lei Y, Jeong JJ, Wang T, Shu HK, Patel P, Tian S, Liu T, Shim H, Mao H, Jani AB et al (2018) MRI-based pseudo CT synthesis using anatomical signature and alternating random forest with iterative refinement model. J Med Imaging 5(4):043504

    Article  Google Scholar 

  18. Andreasen D, Edmund JM, Zografos V, Menze BH, Leemput KV (2016) Computed tomography synthesis from magnetic resonance images in the pelvis using multiple random forests and auto-context features. In: Medical imaging 2016: image processing, vol 9784, pp 323–330. SPIE

  19. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):84–90

    Article  Google Scholar 

  20. Fu J, Yang Y, Singhrao K, Ruan D, Chu FI, Low DA, Lewis JH (2019) Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Med Phys 46(9):3788–3798

    Article  PubMed  Google Scholar 

  21. Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419

    Article  CAS  PubMed  Google Scholar 

  22. Xiang L, Wang Q, Nie D, Zhang L, Jin X, Qiao Y, Shen D (2018) Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med Image Anal 47:31–44

    Article  PubMed  PubMed Central  Google Scholar 

  23. Osman AFI, Tamam NM (2022) Deep learning-based convolutional neural network for intramodality brain MRI synthesis. J Appl Clin Med Phys 23(4):e13530

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784

  25. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Išgum I (2017) Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging, pp 14–23. Springer

  26. Nie D, Trullo R, Lian J, Petitjean C, Ruan S, Wang Q, Shen D (2017) Medical image synthesis with context-aware generative adversarial networks. In: International conference on medical image computing and computer-assisted intervention, pp 417–425. Springer

  27. Yang H, Sun J, Carass A, Zhao C, Lee J, Xu Z, Prince J (2018) Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp 174–182. Springer

  28. Hu S, Shen Y, Wang S, Lei B (2020) Brain MR to PET synthesis via bidirectional generative adversarial network. In: International conference on medical image computing and computer-assisted intervention, pp 698–707. Springer

  29. Hu S, Lei B, Wang S, Wang Y, Feng Z, Shen Y (2021) Bidirectional mapping generative adversarial networks for brain MR to pet synthesis. IEEE Trans Med Imaging 41(1):145–157

    Article  PubMed  Google Scholar 

  30. Hong S, Marinescu R, Dalca AV, Bonkhoff AK, Bretzner M, Rost NS, Golland P (2021) 3D-StyleGAN: a style-based generative adversarial network for generative modeling of three-dimensional medical images. In: Deep generative models, and data augmentation, labelling, and imperfections, pp 24–34. Springer

  31. Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P (2019) Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans Med Imaging 38(7):1750–1762

    Article  PubMed  Google Scholar 

  32. Luo Y, Nie D, Zhan B, Li Z, Wu X, Zhou J, Wang Y, Shen D (2021) Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion. Neurocomputing 452:63–77

    Article  Google Scholar 

  33. Dalmaz O, Yurt M, Çukur T (2022) ResViT: residual vision transformers for multimodal medical image synthesis. IEEE Trans Med Imaging 41(10):2598–2614

    Article  PubMed  Google Scholar 

  34. Wang C, Yang G, Papanastasiou G, Tsaftaris SA, Newby DE, Gray C, Macnaught G, MacGillivray TJ (2021) DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis. Inf Fusion 67:147–160

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patrini G, Nielsen F, Nock R, Carioni M (2016) Loss factorization, weakly supervised learning and label noise robustness. In: International conference on machine learning, pp 708–717. PMLR

  36. Manwani N, Sastry PS (2013) Noise tolerance under risk minimization. IEEE Trans Cybern 43(3):1146–1151

    Article  PubMed  Google Scholar 

  37. Van Rooyen B, Menon A, Williamson RC (2015) Learning with symmetric label noise: the importance of being unhinged. Adv Neural Inf Process Syst 28

  38. Liu T, Tao D (2015) Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell 38(3):447–461

    Article  Google Scholar 

  39. Tanno R, Saeedi A, Sankaranarayanan S, Alexander DC, Silberman N (2019) Learning from noisy labels by regularized estimation of annotator confusion. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11244–11253

  40. Boughorbel S, Jarray F, Venugopal N, Elhadi H (2018) Alternating loss correction for preterm-birth prediction from EHR data with noisy labels. arXiv:1811.09782

  41. Huang X, Liu MY, Belongie S, Kautz J (2018) Multimodal unsupervised image-to-image translation. In: Proceedings of the European conference on computer vision (ECCV), pp 172–189

  42. Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, Liu D, Mu Y, Tan M, Wang X et al (2020) Deep high-resolution representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell 43(10):3349–3364

    Article  Google Scholar 

  43. Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19

  44. Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y (2018) Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European conference on computer vision (ECCV), pp. 286–301

  45. Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241. Springer

  47. Trebing K, Staňczyk T, Mehrkanoon S (2021) SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture. Pattern Recognit Lett 145:178–186

    Article  Google Scholar 

  48. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60

    Article  CAS  PubMed  Google Scholar 

  49. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223–2232

  50. Mao X, Li Q, Xie H, Lau RYK, Wang Z, Smolley SP (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2794–2802

  51. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4(1):1–13

    Article  Google Scholar 

  53. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv:1811.02629

  54. Dar SUH, Yurt M, Karacan L, Erdem A, Erdem E, Cukur T (2019) Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans Med Iimaging 38(10):2375–2388

    Article  Google Scholar 

  55. Chen R, Huang W, Huang B, Sun F, Fang B (2020) Reusing discriminators for encoding: towards unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8168–8177

  56. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  57. Xu L, Zhang H, Song L, Lei Y (2022) Bi-MGAN: bidirectional T1-to-T2 MRI images prediction using multi-generative multi-adversarial nets. Biomed Signal Process Control 78:103994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjiang Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Liang, X., Liu, W. et al. ReeGAN: MRI image edge-preserving synthesis based on GANs trained with misaligned data. Med Biol Eng Comput 62, 1851–1868 (2024). https://doi.org/10.1007/s11517-024-03035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03035-w

Keywords

Navigation