Skip to main content
Log in

SSDL—an automated semi-supervised deep learning approach for patient-specific 3D reconstruction of proximal femur from QCT images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Deep Learning (DL) techniques have recently been used in medical image segmentation and the reconstruction of 3D anatomies of a human body. In this work, we propose a semi-supervised DL (SSDL) approach utilizing a CNN-based 3D U-Net model for femur segmentation from sparsely annotated quantitative computed tomography (QCT) slices. Specifically, QCT slices at the proximal end of the femur forming ball and socket joint with acetabulum were annotated for precise segmentation, where a segmenting binary mask was generated using a 3D U-Net model to segment the femur accurately. A total of 5474 QCT slices were considered for training among which 2316 slices were annotated. 3D femurs were further reconstructed from segmented slices employing polynomial spline interpolation. Both qualitative and quantitative performance of segmentation and 3D reconstruction were satisfactory with more than 90% accuracy achieved for all of the standard performance metrics considered. The spatial overlap index and reproducibility validation metric for segmentation—Dice Similarity Coefficient was 91.8% for unseen patients and 99.2% for validated patients. An average relative error of 12.02% and 10.75% for volume and surface area, respectively, were computed for 3D reconstructed femurs. The proposed approach demonstrates its effectiveness in accurately segmenting and reconstructing 3D femur from QCT slices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets presented during the current study are not publicly available due to privacy and ethical restrictions but might be available on reasonable request from the corresponding author.

References

  1. Sheehan SE, Shyu JY, Weaver MJ, Sodickson AD, Khurana B (2015) Proximal femoral fractures: what the orthopedic surgeon wants to know. Radiographics 35(5):1563–1584

    Article  PubMed  Google Scholar 

  2. Siebenlist S, Torsiglieri T, Kraus T, Burghardt R, Stöckle U, Lucke M (2010) Comminuted fractures of the proximal ulna—preliminary results with an anatomically preshaped locking compression plate (LCP) system. Injury 41(12):1306–1311

    Article  CAS  PubMed  Google Scholar 

  3. Grignon B, Oldrini G, Walter F (2016) Teaching medical anatomy: what is the role of imaging today? Surg Radiol Anat 38:253–260

    Article  PubMed  Google Scholar 

  4. Kasban H, El-Bendary M, Salama D (2015) A comparative study of medical imaging techniques. Int J Information Sci Intell Syst 4(2):37–58

    Google Scholar 

  5. Ohnaru K, Sone T, Tanaka K, Akagi K, Ju Y-I, Choi H-J et al (2013) Hip structural analysis: a comparison of DXA with CT in postmenopausal Japanese women. Springerplus 2(1):1–8

    Article  Google Scholar 

  6. Anez-Bustillos L, Derikx LC, Verdonschot N, Calderon N, Zurakowski D, Snyder BD et al (2014) Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects. Bone 58:160–167

    Article  PubMed  Google Scholar 

  7. Benca E, Synek A, Amini M, Kainberger F, Hirtler L, Windhager R et al (2019) QCT-based finite element prediction of pathologic fractures in proximal femora with metastatic lesions. Sci Rep 9(1):10305

    Article  PubMed  PubMed Central  Google Scholar 

  8. Faisal TR, Luo Y (2017) Study of the variations of fall induced hip fracture risk between right and left femurs using CT-based FEA. Biomed Eng Online 16:1–17

    Article  Google Scholar 

  9. Lee Y, Ogihara N, Lee T (2019) Assessment of finite element models for prediction of osteoporotic fracture. J Mech Behav Biomed Mater 97:312–320

    Article  PubMed  Google Scholar 

  10. Mirzaei M, Keshavarzian M, Naeini V (2014) Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone 64:108–114

    Article  PubMed  Google Scholar 

  11. Travascio F, Buller LT, Milne E, Latta L (2021) Mechanical performance and implications on bone healing of different screw configurations for plate fixation of diaphyseal tibia fractures: a computational study. Eur J Orthop Surg Traumatol 31:121–130

    Article  PubMed  Google Scholar 

  12. Solitro GF, Welborn MC, Mehta AI, Amirouche F (2024) How to optimize pedicle screw parameters for the thoracic spine? A biomechanical and finite element method study. Global. Spine J 14(1):187–194

    Article  PubMed  Google Scholar 

  13. Solitro GF, Mainnemare F, Amirouche F, Mehta A (2019) A novel technique with reduced computed tomography exposure to predict vertebral compression fracture: a finite element study based on rat vertebrae. Med Biol Eng Comput 57:795–805

    Article  PubMed  Google Scholar 

  14. Koh K, Kim YH, Kim K, Park WM (2011) Reconstruction of patient-specific femurs using X-ray and sparse CT images. Comput Biol Med 41(7):421–426

    Article  PubMed  Google Scholar 

  15. Ben Younes L, Nakajima Y, Saito T (2014) Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models. Int J Comput Assist Radiol Surg 9:189–196

    Article  PubMed  Google Scholar 

  16. Carballido-Gamio J, Bonaretti S, Saeed I, Harnish R, Recker R, Burghardt AJ et al (2015) Automatic multi-parametric quantification of the proximal femur with quantitative computed tomography. Quant Imaging Med Surg 5(4):552

    PubMed  PubMed Central  Google Scholar 

  17. Chu C, Bai J, Wu X, Zheng G (2015) MASCG: Multi-atlas segmentation constrained graph method for accurate segmentation of hip CT images. Med Image Anal 26(1):173–184

    Article  PubMed  Google Scholar 

  18. Xia Y, Fripp J, Chandra SS, Schwarz R, Engstrom C, Crozier S (2013) Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys Med Biol 58(20):7375

    Article  PubMed  Google Scholar 

  19. Chandra SS, Xia Y, Engstrom C, Crozier S, Schwarz R, Fripp J (2014) Focused shape models for hip joint segmentation in 3D magnetic resonance images. Med Image Anal 18(3):567–578

    Article  PubMed  Google Scholar 

  20. Xia Y, Chandra SS, Engstrom C, Strudwick MW, Crozier S, Fripp J (2014) Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching. Phys Med Biol 59(23):7245

    Article  PubMed  Google Scholar 

  21. Gilles B, Magnenat-Thalmann N (2010) Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med Image Anal 14(3):291–302

    Article  PubMed  Google Scholar 

  22. Korfiatis VC, Tassani S, Matsopoulos GK (2017) An independent active contours segmentation framework for bone micro-CT images. Comput Biol Med 87:358–370

    Article  PubMed  Google Scholar 

  23. Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015

  24. Ahmed SM, Mstafa RJ (2022) A comprehensive survey on bone segmentation techniques in knee osteoarthritis research: from conventional methods to deep learning. Diagnostics. 12(3):611

    Article  PubMed  PubMed Central  Google Scholar 

  25. Besler BA, Michalski AS, Kuczynski MT, Abid A, Forkert ND, Boyd SK (2021) Bone and joint enhancement filtering: application to proximal femur segmentation from uncalibrated computed tomography datasets. Med Image Anal 67:101887

    Article  PubMed  Google Scholar 

  26. Santarelli C, Argenti F, Uccheddu F, Alparone L, Carfagni M (2020) Volumetric interpolation of tomographic sequences for accurate 3D reconstruction of anatomical parts. Comput Methods Programs Biomed 194:105525

    Article  PubMed  Google Scholar 

  27. Grassi L, Hraiech N, Schileo E, Ansaloni M, Rochette M, Viceconti M (2011) Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur. Med Eng Phys 33(1):112–120

    Article  PubMed  Google Scholar 

  28. Schmid J, Kim J, Magnenat-Thalmann N (2011) Robust statistical shape models for MRI bone segmentation in presence of small field of view. Med Image Anal 15(1):155–168

    Article  PubMed  Google Scholar 

  29. Kardell M, Magnusson M, Sandborg M, Alm Carlsson G, Jeuthe J, Malusek A (2016) Automatic segmentation of pelvis for brachytherapy of prostate. Radiat Prot Dosimetry 169(1-4):398–404

    Article  CAS  PubMed  Google Scholar 

  30. Vasilache S, Najarian K (2008) Automated bone segmentation from pelvic CT images. In: 2008 IEEE International Conference on Bioinformatics and Biomeidcine Workshops. IEEE, pp 41–47

    Chapter  Google Scholar 

  31. Kalshetti P, Bundele M, Rahangdale P, Jangra D, Chattopadhyay C, Harit G et al (2017) An interactive medical image segmentation framework using iterative refinement. Comput Biol Med 83:22–33

    Article  PubMed  Google Scholar 

  32. Stawiaski J, Decenciere E, Bidault F (2008) Interactive liver tumor segmentation using graph-cuts and watershed. In: 11th international conference on medical image computing and computer assisted intervention (MICCAI 2008)

    Google Scholar 

  33. Malusek A, Magnusson M, Sandborg M, Alm CG (2017) A model-based iterative reconstruction algorithm DIRA using patient-specific tissue classification via DECT for improved quantitative CT in dose planning. Med Phys 44(6):2345–2357

    Article  CAS  PubMed  Google Scholar 

  34. Krčah M, Székely G, Blanc R (2011) Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 2087–2090

    Chapter  Google Scholar 

  35. Lopez-Jimenez F, Attia Z, Arruda-Olson AM, Carter R, Chareonthaitawee P, Jouni H et al (2020) Artificial intelligence in cardiology: present and future. Mayo Clinic Proc 95(5):1015–1039

    Article  Google Scholar 

  36. Peña-Solórzano CA, Albrecht DW, Bassed R, Gillam J, Harris P, Dimmock M (2020) Semi-supervised labelling of the femur in a whole-body post-mortem CT database using deep learning. Comput Biol Med 122:103797

    Article  PubMed  Google Scholar 

  37. Rokaya D, Kongkiatkamon S, Heboyan A, Dam VV, Amornvit P, Khurshid Z et al (2022) 3d-printed biomaterials in biomedical application. In: Functional Biomaterials: Drug Delivery and Biomedical Applications. Springer, pp 319–339

  38. Luca AR, Ursuleanu TF, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M et al (2022) Impact of quality, type and volume of data used by deep learning models in the analysis of medical images. Inform Med Unlocked 29:100911

    Article  Google Scholar 

  39. Yu AC, Mohajer B, Eng J (2022) External validation of deep learning algorithms for radiologic diagnosis: a systematic review. Radiology. Artificial Intelligence 4(3):e210064

    PubMed  PubMed Central  Google Scholar 

  40. Ronneberger O, Fischer P, Brox T (2015, Proceedings, Part III 18) U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. In: 18th International Conference. Springer, Munich, Germany, pp 234–241

    Google Scholar 

  41. Sánchez JCG, Magnusson M, Sandborg M, Tedgren ÅC, Malusek A (2020) Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Phys Med 69:241–247

    Article  Google Scholar 

  42. Klein A, Warszawski J, Hillengaß J, Maier-Hein KH (2019) Automatic bone segmentation in whole-body CT images. Int J Comput Assist Radiol Surg 14:21–29

    Article  PubMed  Google Scholar 

  43. Noguchi S, Nishio M, Yakami M, Nakagomi K, Togashi K (2020) Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques. Comput Biol Med 121:103767

    Article  PubMed  Google Scholar 

  44. Pham T-T, Le M-B, Le LH, Andersen J, Lou E (2021) Assessment of hip displacement in children with cerebral palsy using machine learning approach. Med Biol Eng Comput 59(9):1877–1887

    Article  PubMed  Google Scholar 

  45. Wani IM, Arora S (2020) Computer-aided diagnosis systems for osteoporosis detection: a comprehensive survey. Med Biol Eng Comput 58:1873–1917

    Article  PubMed  Google Scholar 

  46. Chen F, Liu J, Zhao Z, Zhu M, Liao H (2017) Three-dimensional feature-enhanced network for automatic femur segmentation. IEEE J Biomed Health Inform 23(1):243–252

    Article  PubMed  Google Scholar 

  47. Deng Y, Wang L, Zhao C, Tang S, Cheng X, Deng H-W et al (2022) A deep learning-based approach to automatic proximal femur segmentation in quantitative CT images. Med Biol Eng Comput 60(5):1417–1429

    Article  PubMed  Google Scholar 

  48. Zhu L, Han J, Guo R, Wu D, Wei Q, Chai W et al (2020) An automatic classification of the early osteonecrosis of femoral head with deep learning. Current medical imaging 16(10):1323–1331

    Article  PubMed  Google Scholar 

  49. Awal R, Ben Hmida J, Luo Y, Faisal T (2022) Study of the significance of parameters and their interaction on assessing femoral fracture risk by quantitative statistical analysis. Med Biol Eng Comput 60(3):843–854. https://doi.org/10.1007/s11517-022-02516-0

    Article  PubMed  Google Scholar 

  50. Faisal TR, Luo Y (2016) Study of stress variations in single-stance and sideways fall using image-based finite element analysis. Biomed Mater Eng 27(1):1–14

    PubMed  Google Scholar 

  51. Wang C, Dahlström N, Fransson S-G, Lundström C (2015) Real-time interactive 3D tumor segmentation using a fast level-set algorithm. J Med Imaging Health Inform 5(8):1998–2002

    Article  Google Scholar 

  52. Khan S, Warkhedkar R, Shyam A (2014) Analysis of Hounsfield unit of human bones for strength evaluation. Procedia Mater Sci 6:512–519

    Article  CAS  Google Scholar 

  53. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

    Google Scholar 

  54. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    Google Scholar 

  55. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  56. Dubey SR, Singh SK, Chaudhuri BB (2022) Activation functions in deep learning: a comprehensive survey and benchmark. Neurocomputing 503:92–108

    Article  Google Scholar 

  57. Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 658–666

  58. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge CM (2017) Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017. Springer, Québec City, QC, Canada Proceedings 3, pp 240–248

    Chapter  Google Scholar 

  59. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88:303–338

    Article  Google Scholar 

  60. Ting KM (2010) Sensitivity and specificity. In: Sammut C, Webb GI (eds) Encyclopedia of Machine Learning. Springer US, Boston, MA, pp 901–902

    Google Scholar 

  61. Bjornsson PA, Helgason B, Palsson H, Sigurdsson S, Gudnason V, Ellingsen LM (2021) Automated femur segmentation from computed tomography images using a deep neural network. In: Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional Imaging. SPIE, pp 324–330

    Google Scholar 

  62. Sammut C, Webb GI (2010) Leave-one-out cross-validation. In: Encyclopedia of machine learning, pp 600–601

    Chapter  Google Scholar 

  63. Kingma DP, Ba J. Adam (2014) A method for stochastic optimization. arXiv preprint arXiv:14126980

  64. Wolberg G, Alfy I (2002) An energy-minimization framework for monotonic cubic spline interpolation. J Comput Appl Math 143(2):145–188

    Article  Google Scholar 

  65. Musy M, Jacquenot G, Dalmasso G, de Bruin R, Pollack A, Claudi F et al (2021) Vedo: a python module for scientific analysis and visualization of 3D objects and point clouds. Zenodo

  66. Chaudhary A, Jhaveri SJ, Sanchez A, Avila LS, Martin KM, Vacanti A et al (2019) Cross-platform ubiquitous volume rendering using programmable shaders in VTK for scientific and medical visualization. IEEE Comput Graph Appl 39(1):26–43

    Article  PubMed  Google Scholar 

  67. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics 21(4):163–169

    Article  Google Scholar 

  68. Tan Y, Hua J, Dong M (2007) 3D reconstruction from 2D images with hierarchical continuous simplices. Vis Comput 23(9):905–914. https://doi.org/10.1007/s00371-007-0157-0

    Article  Google Scholar 

  69. Guido VR, Drake F Jr (2009) Python 3 reference manual. CreateSpace, Scotts Valley

    Google Scholar 

  70. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:160304467

  71. Mason D (2011) SU-E-T-33: pydicom: an open source DICOM library. Med Phys 38(6 Part 10):3493

    Article  Google Scholar 

  72. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao C, Keyak JH, Tang J, Kaneko TS, Khosla S, Amin S et al (2020) A deep learning-based method for automatic segmentation of proximal femur from quantitative computed tomography images. arXiv preprint arXiv:200605513

  74. Jeuthe J, Sánchez JCG, Magnusson M, Sandborg M, Tedgren ÅC, Malusek A (2021) Semi-automated 3D segmentation of pelvic region bones in CT volumes for the annotation of machine learning datasets. Radiat Prot Dosimetry 195(3-4):172–176

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Sarah Doll of Mechanical Engineering at UL Lafayette, USA, and Mashiyat Nayeem of Computer Science of North South University, Bangladesh, for helping on data annotation. The authors acknowledge the intellectual contribution of Rabina Awal of Musculoskeletal Mechanics & Multiscale Materials (4M) Lab in the Mechanical Engineering at UL Lafayette throughout the project. The authors also acknowledge the feedback provided by Dr. Ahmed Suparno Bahar Moni, an Assistant Professor and Orthopedic Surgeon in the Dept. of Orthopaedics at the University of Toledo in assessing our annotation.

Author information

Authors and Affiliations

Authors

Contributions

TF and MN conceived the idea, and TF, MN, and JS designed the study. JS developed the model and conducted experiments. JS, MN, and TF conducted the data analysis and interpretation of data. All authors discussed the results and contributed to the drafting of this manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Tanvir R. Faisal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, J., Naznin, M. & Faisal, T.R. SSDL—an automated semi-supervised deep learning approach for patient-specific 3D reconstruction of proximal femur from QCT images. Med Biol Eng Comput 62, 1409–1425 (2024). https://doi.org/10.1007/s11517-023-03013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-03013-8

Keywords

Navigation