Skip to main content
Log in

Biomechanical effects of typical lower limb movements of Chen-style Tai Chi on knee joint

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The load and stress distribution on cartilage and meniscus of the knee joint in typical lower limb movements of Chen-style Tai Chi (TC) and deep squat (DS) were analyzed using finite element (FE) analysis. The loadings for this analysis consisted of muscle forces and ground reaction force (GRF), which were calculated through the inverse dynamic approach based on kinematics and force plate measurements obtained from motion capture experiments. Thirteen experienced practitioners performed four typical TC movements, namely, single whip (SW), brush knee and twist step (BKTS), stretch down (SD), and part the wild horse’s mane (PWHM), which exhibit lower posture and greater lower limb force compared to other TC styles. The results indicated that TC required greater lower limb muscle strength than DS, resulting in greater knee joint forces. The stress on the medial cartilage in SW and BKTS fell within a range conductive to maintaining the balance between anabolism and catabolism of cartilage matrix. This was due to the fact that SW and BKTS reduce the medial to total tibiofemoral contact force ratios through knee abduction, which may effectively alleviate mild medial knee osteoarthritis (KOA). However, the greater medial contact force ratios observed in SD and PWHM resulted in great contact stresses that may aggravate the pain of patients with KOA. To mitigate these effects, practitioners should consider elevating their postures appropriately to reduce knee flexion angles, especially during the single-leg support phase. This adjustment can decrease the required muscle strength, load and stress on the knee joint.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu L, Wang Y, Liu X et al (2021) Tai Chi exercise can ameliorate physical and mental health of patients with knee osteoarthritis: systematic review and meta-analysis. Clin Rehabil 35:64–79

    Article  PubMed  Google Scholar 

  2. Duan J, Wang K, Chang T et al (2020) Tai Chi is safe and effective for the hip joint: a biomechanical perspective. J Aging Phys Act 28:415–425

    Article  Google Scholar 

  3. Yang F, Liu W (2020) Biomechanical mechanism of Tai-Chi gait for preventing falls: a pilot study. J Biomech 105:109769

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Wang K, Wang L et al (2019) Biomechanical analysis of the meniscus and cartilage of the knee during a typical Tai Chi movement-brush-knee and twist-step. Math Biosci Eng 16:898–908

    Article  PubMed  Google Scholar 

  5. Zou L, Wang C, Tian Z et al (2017) Effect of Yang-style Tai Chi on gait parameters and musculoskeletal flexibility in healthy Chinese older women. Sports Basel Switz 5:1–12

    Google Scholar 

  6. Wang C, Schmid CH, Hibberd PL et al (2009) Tai Chi is effective in treating knee osteoarthritis: a randomized controlled trial. Arthritis Rheum 61:1545–1553

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li JX, Xu DQ, Hong Y (2009) Changes in muscle strength, endurance, and reaction of the lower extremities with Tai Chi intervention. J Biomech 42:967–971

    Article  PubMed  Google Scholar 

  8. Wu G, Hitt J (2005) Ground contact characteristics of Tai Chi gait. Gait Posture 22:32–39

    Article  PubMed  Google Scholar 

  9. Castrogiovanni P, Musumeci G (2016) Which is the best physical treatment for osteoarthritis? J Funct Morphol Kinesiol 1:54–68

    Article  Google Scholar 

  10. Bennell K, Bowles K-A, Payne C et al (2007) Effects of laterally wedged insoles on symptoms and disease progression in medial knee osteoarthritis: a protocol for a randomised, double-blind, placebo controlled trial. Bmc Musculoskelet Disord 8:96

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hiligsmann M, Cooper C, Arden N et al (2013) Health economics in the field of osteoarthritis: an expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 43:303–313

    Article  PubMed  Google Scholar 

  12. Taylor WR, Heller MO, Bergmann G, Duda GN (2004) Tibio-femoral loading during human gait and stair climbing. J Orthop Res 22:625–632

    Article  PubMed  Google Scholar 

  13. Sasaki K, Neptune RR (2010) Individual muscle contributions to the axial knee joint contact force during normal walking. J Biomech 43:2780–2784

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res Off Publ Orthop Res Soc 9:113–119

    Article  CAS  Google Scholar 

  15. Buelt A, Narducci DM (2021) Osteoarthritis management: updated guidelines from the American College of Rheumatology and Arthritis Foundation. Am Fam Physician 103:120–121

    PubMed  Google Scholar 

  16. Zeng C-Y, Zhang Z-R, Tang Z-M, Hua F-Z (2021) Benefits and mechanisms of exercise training for knee osteoarthritis. Front Physiol 12:794062

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang C, Schmid CH, Iversen MD et al (2016) Comparative effectiveness of Tai Chi versus physical therapy for knee osteoarthritis. Ann Intern Med 165:77–86

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Schmid CH, Hibberd PL et al (2008) Tai Chi for treating knee osteoarthritis: designing a long-term follow up randomized controlled trial. Bmc Musculoskelet Disord 9:108

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ye J, Cai S, Zhong W et al (2014) Effects of Tai Chi for patients with knee osteoarthritis: a systematic review. J Phys Ther Sci 26:1133–1137

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harlaar J, Macri EM, Wesseling M (2022) Osteoarthritis year in review 2021: mechanics. Osteoarthr Cartil 30:663–670

    Article  CAS  Google Scholar 

  21. Shu L, Yamamoto K, Yoshizaki R et al (2022) Multiscale finite element musculoskeletal model for intact knee dynamics. Comput Biol Med 141:105023

    Article  PubMed  Google Scholar 

  22. Esrafilian A, Stenroth L, Mononen ME et al (2020) EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci. Sci Rep 10:3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mo F, Li J, Dan M et al (2019) Implementation of controlling strategy in a biomechanical lower limb model with active muscles for coupling multibody dynamics and finite element analysis. J Biomech 91:51–60

    Article  PubMed  Google Scholar 

  24. Park S, Lee S, Yoon J, Chae S-W (2019) Finite element analysis of knee and ankle joint during gait based on motion analysis. Med Eng Phys 63:33–41

    Article  PubMed  Google Scholar 

  25. Hu J, Xin H, Chen Z et al (2019) The role of menisci in knee contact mechanics and secondary kinematics during human walking. Clin Biomech 61:58–63

    Article  Google Scholar 

  26. Orozco GA, Bolcos P, Mohammadi A et al (2021) Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: a computational proof-of-concept study with MRI follow-up. J Orthop Res 39:1064–1081

    Article  CAS  PubMed  Google Scholar 

  27. Bolcos PO, Mononen ME, Tanaka MS et al (2020) Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction: combining knee joint computational modelling with follow-up T1ρ and T2 imaging. Clin Biomech 79:104844

    Article  Google Scholar 

  28. Kobsar D, Masood Z, Khan H et al (2020) Wearable inertial sensors for gait analysis in adults with osteoarthritis—a scoping review. Sensors 20:7143

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith SHL, Coppack RJ, van den Bogert AJ et al (2021) Review of musculoskeletal modelling in a clinical setting: current use in rehabilitation design, surgical decision making and healthcare interventions. Clin Biomech 83:105292

    Article  Google Scholar 

  30. Wu G, Liu W, Hitt J, Millon D (2004) Spatial, temporal and muscle action patterns of Tai Chi gait. J Electromyogr Kinesiol 14:343–354

    Article  PubMed  Google Scholar 

  31. Shen JZ, Gu LX (1994) Chen-style Tai Chi Chuan. People’s education press (in Chinese)

    Google Scholar 

  32. Kainz H, Modenese L, Lloyd DG et al (2016) Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models. J Biomech 49:1658–1669

    Article  CAS  PubMed  Google Scholar 

  33. Escamilla RF (2001) Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc 33:127–141

    Article  CAS  PubMed  Google Scholar 

  34. Pfister A, West AM, Bronner S, Noah JA (2014) Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J Med Eng Technol 38:274–280

    Article  PubMed  Google Scholar 

  35. Horsman MDK, Koopman HFJM, van der Helm FCT et al (2007) Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech 22:239–247

    Article  Google Scholar 

  36. Alexander N, Schwameder H (2016) Comparison of estimated and measured muscle activity during inclined walking. J Appl Biomech 32:150–159

    Article  PubMed  Google Scholar 

  37. Fluit R, Andersen MS, Kolk S et al (2014) Prediction of ground reaction forces and moments during various activities of daily living. J Biomech 47:2321–2329

    Article  CAS  PubMed  Google Scholar 

  38. Xu D, Li J, Hong Y (2003) Tai Chi movement and proprioceptive training: a kinematics and EMG analysis. Res Sports Med Int J 11:129–144

    Article  Google Scholar 

  39. Alexander N, Schwameder H (2016) Lower limb joint forces during walking on the level and slopes at different inclinations. Gait Posture 45:137–142

    Article  PubMed  Google Scholar 

  40. Bae J, Park K, Seon J et al (2012) Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Med Biol Eng Comput 50:53–60

    Article  PubMed  Google Scholar 

  41. Yao J, Wen CY, Zhang M et al (2014) Effect of tibial drill-guide angle on the mechanical environment at bone tunnel aperture after anatomic single-bundle anterior cruciate ligament reconstruction. Int Orthop 38:973–981

    Article  PubMed  PubMed Central  Google Scholar 

  42. Asano T, Akagi M, Tanaka K et al (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop:157–166

  43. Mononen ME, Jurvelin JS, Korhonen RK (2015) Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput Methods Biomech Biomed Engin 18:141–152

    Article  PubMed  Google Scholar 

  44. Teichtahl A, Wluka A, Cicuttini FM (2003) Abnormal biomechanics: a precursor or result of knee osteoarthritis? Br J Sports Med 37:289–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimokata H, Ando F, Yuki A, Otsuka R (2014) Age-related changes in skeletal muscle mass among community-dwelling Japanese: A 12-year longitudinal study. Geriatr Gerontol Int 14:85–92

    Article  PubMed  Google Scholar 

  46. Nguyen C, Lefevre-Colau M-M, Poiraudeau S, Rannou F (2016) Rehabilitation (exercise and strength training) and osteoarthritis: a critical narrative review. Ann Phys Rehabil Med 59:190–195

    Article  PubMed  Google Scholar 

  47. Hiyama Y, Yamada M, Kitagawa A et al (2012) A four-week walking exercise programme in patients with knee osteoarthritis improves the ability of dual-task performance: a randomized controlled trial. Clin Rehabil 26:403–412

    Article  PubMed  Google Scholar 

  48. Richards RE, Andersen MS, Harlaar J, van den Noort JC (2018) Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications. Osteoarthritis Cartilage 26:1203–1214

    Article  CAS  PubMed  Google Scholar 

  49. Miyazaki T, Wada M, Kawahara H et al (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mauricio E, Sliepen M, Rosenbaum D (2018) Acute effects of different orthotic interventions on knee loading parameters in knee osteoarthritis patients with varus malalignment. The Knee 25:825–833

    Article  PubMed  Google Scholar 

  51. Costa CR, Morrison WB, Carrino JA (2004) Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? Am J Roentgenol 183:17–23

    Article  Google Scholar 

  52. Fox AJS, Wanivenhaus F, Burge AJ et al (2015) The human meniscus: a review of anatomy, function, injury, and advances in treatment: the meniscus: anatomy, function, injury and treatment. Clin Anat 28:269–287

    Article  PubMed  Google Scholar 

  53. Heijink A, Gomoll AH, Madry H et al (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20:423–435

    Article  PubMed  Google Scholar 

  54. Chen C, Tambe DT, Deng L, Yang L (2013) Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol-Cell Physiol 305:C1202–C1208

    Article  CAS  PubMed  Google Scholar 

  55. Jørgensen AEM, Kjær M, Heinemeier KM (2017) The effect of aging and mechanical loading on the metabolism of articular cartilage. J Rheumatol 44:410–417

    Article  PubMed  Google Scholar 

  56. Bedi A, Kelly NH, Baad M et al (2010) Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Jt Surg-Am Vol 92A:1398–1408

    Article  Google Scholar 

  57. Hudelmaier M, Glaser C, Hohe J et al (2001) Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum 44:2556–2561

    Article  CAS  PubMed  Google Scholar 

  58. Tsai P-F, Chang JY, Beck C et al (2013) A pilot cluster-randomized trial of a 20-week tai chi program in elders with cognitive impairment and osteoarthritic knee: effects on pain and other health outcomes. J Pain Symptom Manage 45:660–669

    Article  PubMed  Google Scholar 

  59. Englund M (2008) The role of the meniscus in osteoarthritis genesis. Rheum Dis Clin N Am 34:573

    Article  Google Scholar 

  60. Buchbinder R, Harris IA, Sprowson A (2016) Management of degenerative meniscal tears and the role of surgery. Br J Sports Med 50:1413–1416

    Article  PubMed  Google Scholar 

  61. Peña E, Calvo B, Martínez MA et al (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20:498–507

    Article  Google Scholar 

  62. Shriram D, Kumar GP, Cui F et al (2017) Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep 7:6011

    Article  PubMed  PubMed Central  Google Scholar 

  63. Donahue TLH, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng-Trans Asme 124:273–280

    Article  Google Scholar 

  64. Esrafilian A, Stenroth L, Mononen ME et al (2022) An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox. IEEE Trans Biomed Eng 69:2860–2871

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number: 12272029 and 11872095) and the Natural Science Foundation of Jilin Province (No. 20200201260JC).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design and funding were from He Gong and Yubo Fan. Data collection was performed by Peng Chen, Haibo Liu, and Le Zhang. Data analysis was performed by Haibo Liu and Peng Chen. The first draft was written by Haibo Liu, and He Gong reviewed and edited the draft. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript and agree with the order of presentation of the authors.

Corresponding author

Correspondence to He Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Gong, H., Chen, P. et al. Biomechanical effects of typical lower limb movements of Chen-style Tai Chi on knee joint. Med Biol Eng Comput 61, 3087–3101 (2023). https://doi.org/10.1007/s11517-023-02906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02906-y

Keywords

Navigation