Skip to main content
Log in

Membrane polarization at the excitation threshold induced by external electric fields in cardiomyocytes of rats at different developmental stages

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

External electric fields (E), used for cardiac pacing and defibrillation/cardioversion, induce a spatially variable change in cardiomyocyte transmembrane potential (ΔVm) that depends on cell geometry and E orientation. This study investigates E-induced ΔVm in cardiomyocytes from rats at different ages, which show marked size/geometry variation. Using a tridimensional numerical electromagnetic model recently proposed (NM3D), it was possible: (a) to evaluate the suitability of the simpler, prolate spheroid analytical model (PSAM) to calculate amplitude and location of ΔVm maximum (ΔVmax) for E = 1 V.cm−1; and (b) to estimate the ΔVmax required for excitation (ΔVT) from experimentally determined threshold E values (ET). Ventricular myocytes were isolated from neonatal, weaning, adult, and aging Wistar rats. NM3D was constructed as the extruded 2D microscopy cell image, while measured minor and major cell dimensions were used for PSAM. Acceptable ΔVm estimates can be obtained with PSAM from paralelepidal cells for small θ. ET, but not ΔVT, was higher for neonate cells. ΔVT was significantly greater in the cell from older animals, which indicate lower responsiveness to E associated with aging, rather than with altered cell geometry/dimensions. ΔVT might be used as a non-invasive indicator of cell excitability as it is little affected by cell geometry/size.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References 

  1. Klee M, Plonsey R (1976) Stimulation of spheroidal cells: the role of cell shape. IEEE Trans Biomed Engin 1976(23):347–354. https://doi.org/10.1109/TBME.1976.324597

    Article  Google Scholar 

  2. Gross D, Loew LM, Webb WW (1986) Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J 50:339–348. https://doi.org/10.1016/s0006-3495(86)83467-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma V, Tung L (2002) Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation. J Physiol 542:477–492. https://doi.org/10.1113/jphysiol.2001.013197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oliveira PX, Bassani RA, Bassani JWM (2008) Lethal effect of electric fields on isolated ventricular myocytes. IEEE Trans Biomed Engin 55:2635–2642. https://doi.org/10.1109/tbme.2008.2001135

    Article  Google Scholar 

  5. Nikolski VP, Efimov IR (2005) Electroporation of the heart. Europace 7:S146–S154. https://doi.org/10.1016/j.eupc.2005.04.011

    Article  Google Scholar 

  6. Clementy N, Bodin Bisson A, Teixeira-Gomes AP, Roger S, Angoulvant D, Labas V, Babudy D (2021) The defibrillation conundrum: new insights into the mechanisms of shock-related myocardium injury sustained from a life-saving therapy. Int J Mol Sci 22:5003. https://doi.org/10.3390/ijms22095003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tung L, Borderies JR (1992) Analysis of electric field stimulation of single cardiac muscle cells. Biophys J 63:371–386. https://doi.org/10.1016/2FS0006-3495(92)81632-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krassowska W, Neu JC (1994) Response of a single cell to an external electric field. Biophys J 66:1768–1776. https://doi.org/10.1016/S0006-3495(94)80971-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ranjan R, Thakor NV (1995) Electrical stimulation of cardiac myocytes. Ann Biomed Engin 23:812–821. https://doi.org/10.1007/BF02584480

    Article  CAS  Google Scholar 

  10. Gomes PAP, Bassani RA, Bassani JWM (2001) Electric field stimulation of cardiac myocytes during postnatal development. IEEE Trans Biomed Engin 48:630–636. https://doi.org/10.1109/10.923781

    Article  CAS  Google Scholar 

  11. Valič B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissié J, Rols MP, Miklavčič D (2003) Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J 32:519–528. https://doi.org/10.1007/s00249-003-0296-9

    Article  PubMed  Google Scholar 

  12. Bassani RA, Lima KA, Gomes PAP, Oliveira PX, Bassani JWM (2006) Combining stimulus direction and waveform for optimization of threshold stimulation of isolated ventricular myocytes. Physiol Meas 27:851–863. https://doi.org/10.1088/0967-3334/27/9/008

    Article  PubMed  Google Scholar 

  13. Goulart JT, Oliveira PX, Bassani JWM, Bassani RA (2012) The influence of cell dimensions on the vulnerability of ventricular myocytes to lethal injury by high-intensity electrical fields. Brazilian J Biomed Eng 28:337–345. https://doi.org/10.4322/rbeb.2012.040

    Article  Google Scholar 

  14. Kotnik T Transmembrane voltage induced by applied electric field. In: Miklavcic, D. (eds.), Handbook of Electroporation. Springer, pp 1–17 Cham. https://doi.org/10.1007/978-3-319-26779-1_8-1

  15. Escobar J, Vaca-González JJ, Guevara JM, Garzón-Alvarado DA (2020) Effect of magnetic and electric fields on plasma membrane of single cells: a computational approach. Engin Rep 2:e12125. https://doi.org/10.1002/eng2.12125

    Article  CAS  Google Scholar 

  16. Scuderi M, Dermol-Černe J, Napotnik TB, Chaigne S, Bernus O, Benoist D, Sigg DC, Rems L, Miklavičič D (2023) Characterization of experimentally observed complex interplay between pulse duration, electrical field strength, and cell orientation on electroporation outcome using a time-dependent nonlinear numerical model. Biomolecules 13:727. https://doi.org/10.3390/biom1305072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pucihar G, Kotnik T, Valič B, Miklavcic D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann Biomed Eng 34:642–652. https://doi.org/10.1007/s10439-005-9076-2

    Article  CAS  PubMed  Google Scholar 

  18. Milan HFM, Bassani RA, Santos LEC, Almeida ACG, Bassani JWM (2019) Accuracy of electromagnetic models to estimate cardiomyocyte membrane polarization. Med Biol Eng Comput 57:2617–2627. https://doi.org/10.1007/s11517-019-02054-2

    Article  PubMed  Google Scholar 

  19. Papadacci C, Finel V, Provost J, Villemain O, Bruneval P, Gennisson JL, Tanter M, Fink M, Pernot M (2017) Imaging the dynamics of cardiac fiber orientation in vivo using 3D ultrasound backscatter tensor imaging. Sci Rep 7:830. https://doi.org/10.1038/s41598-017-00946-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaeger KH, Edwards AG, Giles WR, Tveito A (2021) From millimeters to micrometers: re-introducing myocytes in models of cardiac electrophysiology. Front Physiol 12. https://doi.org/10.3389/fphys.2021.763584

  21. Rupp LC, Bergquist JA, Zenger B, Gillette K, Narayan A, Tate JD, Plank G, MacLeod RD (2021)  The role of myocardial fiber direction in epicardial activation patterns via uncertainty quantification. 2021 Computing in Cardiology (CinC), Brno, Czech Republic, pp 1–4. https://doi.org/10.23919/CinC53138.2021.9662950

  22. Mountris KA, Pueyo E (2022) A meshless fragile points method for rule-based definition of myocardial fiber orientation. Computer Meth Progr Biomed 226:107164. https://doi.org/10.1016/j.cmpb.2022.107164

    Article  Google Scholar 

  23. Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615. https://doi.org/10.1529/biophysj.105.072777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yechiel E, Barenholz Y (1985) Relationships between membrane lipid composition and biological properties of rat myocytes. Effects of aging and manipulation of lipid composition. J Biol Chem 260:9123–9131. https://doi.org/10.1016/S0021-9258(17)39339-0

    Article  CAS  PubMed  Google Scholar 

  25. Mitcheson JS, Hancox JC, Levi AJ (1996) Action potentials, ion channel currents and transverse tubule density in adult rabbit ventricular myocytes maintained for 6 days in cell culture. Pflugers Arch 431:814–827. https://doi.org/10.1007/s004240050073

    Article  CAS  PubMed  Google Scholar 

  26. Banyasz T, Lozinskiy I, Payne CE, Edelmann S, Norton B, Chen B, Chen-Izu Y, Izu LT, Balke CW (2008) Transformation of adult rat cardiac myocytes in primary culture. Exp Physiol 93:370–382. https://doi.org/10.1113/expphysiol.2007.040659

    Article  PubMed  Google Scholar 

  27. Hammer K, Ruppenthal S, Viero C, Scholz A, Edelmann L, Kaestner L, Lipp P (2010) Remodelling of Ca2+ handling organelles in adult rat ventricular myocytes during long term culture. J Mol Cell Cardiol 49:427–437. https://doi.org/10.1016/j.yjmcc.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  28. Bassani RA, Bassani JWM (2002) Contribution of Ca2+ transporters to relaxation in intact ventricular myocytes from developing rats. Am J Physiol Heart Circ Physiol 282:H2406–H2413. https://doi.org/10.1152/ajpheart.00320.2001

    Article  CAS  PubMed  Google Scholar 

  29. Penna LB, Bassani RA (2010) Increased spontaneous activity and reduced inotropic response to catecholamines in ventricular myocytes from footshock-stressed rats. Stress 13:73–82. https://doi.org/10.3109/10253890902951778

    Article  CAS  PubMed  Google Scholar 

  30. Milan HFM, Bassani RA, Bassani JWM (2015) Testing electrode suitability for field stimulation of high-threshold biological preparations. Res Biomed Eng 31:273–276. https://doi.org/10.1590/2446-4740.0718

    Article  Google Scholar 

  31. Satoh H, Delbridge LMD, Blatter LA, Bers DM (1996) Surface: volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and development effects. Biophys J 70:1494–1504. https://doi.org/10.1016/2FS0006-3495(96)79711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geuzaine C, Remacle JF (2009) A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Method Engin 79:1309–1331. https://doi.org/10.1002/nme.2579

    Article  Google Scholar 

  33. Cooklin M, Wallis WRJ, Sheridan DJ, Fry CH (1997) Changes in cell-to-cell electrical coupling associated with left ventricular hypertrophy. Circ Res 80:765–771. https://doi.org/10.1161/01.RES.80.6.765

    Article  CAS  PubMed  Google Scholar 

  34. Fry CH, Salvage SC, Manazza A, Dupont E, Labeed FH, Hughes MP, Jabr RI (2012) Cytoplasm resistivity of mammalian atrial myocardium determined by dielectrophoresis and impedance methods. Biophys J 103:2287–2294. https://doi.org/10.1016/2Fj.bpj.2012.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pinheiro J and Bates D (2000) Statistics and computing: mixed-effects models in S and S-PLUS. Springer-Verlag New York, Inc. Ed. 1, p 528. https://doi.org/10.1007/b98882

  36. Zuur AF, Leno EN, Walker N, Saveliev AA, Smith GM (2009) Statistics for biology and health: mixed effects models and extensions in ecology with R. Ed 1, Springer, New York, pp 574. https://doi.org/10.1007/978-0-387-87458-6

  37. Crawley MJ (2013) The R Book. John Wiley & Sons, Ltd, Chichester, United Kingdom, ed. 2, 1051 pp, ISBN: 978–0–470–97392–9. http://www.bio.ic.ac.uk/research/mjcraw/therbook/index.htm

  38. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with applications in R. Springer, New York. https://doi.org/10.1007/978-1-4614-7138-7

    Book  Google Scholar 

  39. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01

    Article  Google Scholar 

  40. Efron E, Hastie T (2016) Computer age statistical inference: algorithms, evidence, and data science. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781316576533

    Book  Google Scholar 

  41. Davison AC, Hinkley DV (1997) Boostrap methods and their applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  42. Canty A, Ripley B (2017) Boot: bootstrap R (S-Plus) Functions. R package version 1.3–20. https://cran.r-project.org/web/packages/boot/citation.html

  43. Howlett SE (2010) Age-associated changes in excitation-contraction coupling are more prominent in ventricular myocytes from male rats than in myocytes from female rats. Am J Physiol Heart Circ Physiol 298:H659–H670. https://doi.org/10.1152/ajpheart.00214.2009

    Article  CAS  PubMed  Google Scholar 

  44. Awad AB, Clay SW (1982) Age-dependent alterations in lipids and function of rat heart sarcolemma. Mech Ageing Dev 19:333–342. https://doi.org/10.1016/0047-6374(82)90017-3

    Article  CAS  PubMed  Google Scholar 

  45. Nagatomo T, Sasaki M, Konishi T (1984) Differences in lipid composition and fluidity of cardiac sacrolemma prepared from newborn and adult rabbits. Biochem Med 32:122–131. https://doi.org/10.1016/0006-2944(84)90014-0

    Article  CAS  PubMed  Google Scholar 

  46. Kilborn MJ, Fedida D (1990) A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 430:37–60. https://doi.org/10.1113/2Fjphysiol.1990.sp018280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wahler GM, Dollinger SJ, Smith JM, Flemal KL (1994) Time course of postnatal changes in rat heart action potential and in transient outward current is different. Am J Physiol Heart Circ Physiol 267:H1157–H1166. https://doi.org/10.1152/ajpheart.1994.267.3.H1157

    Article  CAS  Google Scholar 

  48. Lieber SC, Aubry N, Pain J, Diaz G, Kim S-J, Vatner SF (2004) Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am J Physiol Heart Circ Physiol 287:H645–H651. https://doi.org/10.1152/ajpheart.00564.2003

    Article  CAS  PubMed  Google Scholar 

  49. Stocker P, Bennett ES (2006) Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium. J Gen Physiol 127:253–265. https://doi.org/10.1085/jgp.200509423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oshiyama NF, Pereira AHM, Cardoso AC, Franchini KG, Bassani JWM, Bassani RA (2022) Developmental differences in myocardial transmembrane Na+ transport: implications for excitability and Na+ handling. J Physiol 600:2651–2667. https://doi.org/10.1113/JP282661

    Article  CAS  PubMed  Google Scholar 

  51. Kishida H, Surawicz B, Fu LT (1979) Effect of K+ and K+-induced polarization on (dV/dt)max, threshold potential, and membrane input resistance in guinea pig and cat ventricular myocardium. Circ Res 44:800–814. https://doi.org/10.1161/01.RES.44.6.800

    Article  CAS  PubMed  Google Scholar 

  52. Golod DA, Kumar R, Joyner RW (1998) Determinants of the action potential initiation in isolated rabbit and ventricular myocytes. Am J Physiol Heart Circ Physiol 43:H1902–H1913. https://doi.org/10.1152/ajpheart.1998.274.6.H1902

    Article  Google Scholar 

  53. Cheng DD-L, Tung L, Sobie E (1999) Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol Heart Circ Physiol 277:H351–H362. https://doi.org/10.1152/ajpheart.1999.277.1.H351

    Article  CAS  Google Scholar 

  54. Gomes PAP, Galvão KD, Mateus EF (2002) Excitability of isolated hearts from rats during postnatal development. J Cardiovasc Electrophysiol 13:355–360. https://doi.org/10.1046/j.1540-8167.2002.00355.x

    Article  PubMed  Google Scholar 

  55. Kaufmann SG, Westenbroek RE, Zechner C, Maass AH, Bischoff S, Muck J, Wischmeyer E, Scheuer T, Maier SKG (2010) Functional protein expression of multiple sodium channel α- and β-subunit isoforms in neonatal cardiomyocytes. J Mol Cell Cardiol 48:261–269. https://doi.org/10.1016/j.yjmcc.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  56. Wei JY, Spurgeon HA, Lakatta EG (1984) Excitation-contraction in rat myocardium: alterations with adult aging. Am J Physiol Heart Circ Physiol 246:H784–H791. https://doi.org/10.1152/ajpheart.1984.246.6.h784

    Article  CAS  Google Scholar 

  57. Dibb K, Eisner D, Isenberg G, Rueckschloss, Trafford A (2004) Alterations in the properties of the cardiac inward rectifier potassium channel IK1 in aged sheep. J Physiol 557P:C9. https://www.physoc.org/abstracts/alterations-in-the-properties-of-the-cardiac-inward-rectifier-potassium-channel-ik1-in-aged-sheep/

  58. Cooper S, Jones S (2015) 201 Age-associated decline in Nav1.4 and Nav1.5 isoforms of the sodium channel in rat heart. Heart 101(suppl 4):A1–A136. https://doi.org/10.1136/heartjnl-2015-308066.201

    Article  Google Scholar 

  59. Lim WY, Prabhu S (2019) Implantable cardiac electronic devices in the elderly population. Arrh Electrophysiol Rev 8:143–146. https://doi.org/10.15420/aer.2019.3.4

    Article  Google Scholar 

  60. Barra S, Providência R, Paiva L, Heck P, Agarwal S (2015) Implantable cardioverter-defibrillators in the elderly: rationale and specific age-related considerations. Europace 17:174–186. https://doi.org/10.1093/europace/euu296

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Ms. Elizângela S. Oliveira and Mr. Renato S. Moura (CEB/UNICAMP) for the technical support, and to Dr. Lynn M. Johnson (Cornell Univerity Statistical Consulting Unit) for the statistical support.

Funding

São Paulo Research Foundation (FAPESP, Proc. 2008/54795–6 and 2013/05441–5), Brazilian National Council for Scientific and Technological Development (CNPq, Proc. 302996/2011–7, 30408/2022-0 and 203312/2014–7), Brazilian Ministry of Health and Funding Authority for Studies and Projects (Finep: 0441/12 - 01.13.0214.00), and Coordination for the Improvement of Higher Education Personnel (CAPES; scholarship to HFMM and AAA).

Author information

Authors and Affiliations

Authors

Contributions

JWMB, RAB, and HFMM were responsible for the conception of the study. HFMM and AAA performed the experiments, the calculations, and the statistical analysis. All authors participated in the interpretation and revision of the results. HFMM, AAA, and RAB elaborated the first version of the manuscript, which was revised and approved by all authors.

Corresponding author

Correspondence to Hugo F. M. Milan.

Ethics declarations

Ethics approval

Protocols of animal care and use were approved by the institutional Committee of Ethics in Animal Use (CEUA/IB/UNICAMP; process numbers 2941-1D, 2942-1D, 3009-1A, 3281-1 K and 4093-1G).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cardiac stimulation with electric fields (E) is used to treat arrhythmias.

• During development and aging, the size and shape of cardiac cells change, which may alter their electrical response to E.

• Experiments and computer simulation were used to predict membrane polarization by E.

• The lowest E intensity required for excitation depends on cell geometry and was greater in neonates.

• The membrane depolarization required for excitation was greater in cells from old rats only.

Supplementary Information

ESM 1

(DOCX 725 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milan, H.F.M., Almazloum, A.A., Bassani, R.A. et al. Membrane polarization at the excitation threshold induced by external electric fields in cardiomyocytes of rats at different developmental stages. Med Biol Eng Comput 61, 2637–2647 (2023). https://doi.org/10.1007/s11517-023-02868-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02868-1

Keywords

Navigation