Skip to main content
Log in

Biomechanical analysis of Instrumented decompression and Interbody fusion procedures in Lumbar spine: a finite element analysis study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Interbody fusions have become increasingly popular to achieve good fusion rates. Also, unilateral instrumentation is favored to minimize soft tissue injury with limited hardware. Limited finite element studies are available in the literature to validate these clinical implications. A three-dimensional, non-linear ligamentous attachment finite element model of L3-L4 was created and validated. The intact L3-L4 model was modified to simulate procedures like laminectomy with bilateral pedicle screw Instrumentation, transforaminal, and posterior lumbar interbody fusion (TLIF and PLIF, respectively) with unilateral and bilateral pedicle screw instrumentation. Compared to instrumented laminectomy, interbody procedures showed a considerable reduction in range of motion (RoM) in extension and torsion (6% and 12% difference, respectively). Both TLIF and PLIF showed comparable RoM in all movements with < 5% difference in reduction of RoM between them. Bilateral instrumentation showed a more significant decrease in RoM (> 5% difference) in the entire range of motion except in torsion when compared to unilateral instrumentation. The maximum difference in reduction in RoM was noted in lateral bending (24% and 26% for PLIF and TLIF, respectively), while the least difference in Left torsion (0.6% and 3.6% for PLIF and TLIF, respectively) in comparing bilateral with unilateral instrumentation. Interbody fusion procedures were found to be biomechanically more stable in extension and torsion than the instrumented laminectomy. Single-level TLIF and PLIF achieved a similar reduction in RoM with a < 5% difference. Bilateral screw fixation proved biomechanically superior to unilateral fixation in the entire range of motion except in torsion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ravindra VM, Senglaub SS, Rattani A, Dewan MC, Härtl R, Bisson E, Park KB, Shrime MG (2018) Degenerative Lumbar Spine Disease: Estimating Global Incidence and Worldwide Volume. Global Spine J 8(8):784–794

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gibson JA, Grant IC, Waddell G (1999) The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis. Spine 24(17):1820–1832

    Article  CAS  PubMed  Google Scholar 

  3. Yadav S, Singh S, Arya RK, Kumar A, Kumar I, Jha A (2020) Comparative analysis of transforaminal lumbar interbody fusion versus posterolateral instrumented fusion in degenerative lumbar spine disorders. J Orthop, Trauma Rehabil 27(2):173–178

    Google Scholar 

  4. Høy K, Bünger C, Niederman B, Helmig P, Hansen ES, Li H, Andersen T (2013) Transforaminal lumbar interbody fusion (TLIF) versus posterolateral instrumented fusion (PLF) in degenerative lumbar disorders: a randomized clinical trial with 2-year follow-up. Eur Spine J 22(9):2022–2029

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang BF, Ge CY, Zheng BL, Hao DJ (2016) Transforaminal lumbar interbody fusion versus posterolateral fusion in degenerative lumbar spondylosis: A meta-analysis. Med 95(40):e4995

    Article  Google Scholar 

  6. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1(1):2–18

    PubMed  PubMed Central  Google Scholar 

  7. de Kunder SL, van Kuijk SM, Rijkers K, Caelers IJ, van Hemert WL, de Bie RA, van Santbrink H (2017) Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J 17(11):1712–1721

    Article  PubMed  Google Scholar 

  8. Lan T, Hu SY, Zhang YT, Zheng YC, Zhang R, Shen Z, Yang XJ (2018) Comparison between posterior lumbar interbody fusion and transforaminal lumbar interbody fusion for the treatment of lumbar degenerative diseases: a systematic review and meta-analysis. World Neurosurg 112:86–93

    Article  PubMed  Google Scholar 

  9. Sim HB, Murovic JA, Cho BY, Lim TJ, Park J (2010) Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. J Neurosurg Spine 12(6):700–708

    Article  PubMed  Google Scholar 

  10. Xu H, Tang H, Guan X, Jiang F, Xu N, Ju W, Zhu X, Zhang X, Zhang Q, Li M (2013) Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion by finite element analysis. Operative Neurosurg 72(1):21–26

    Google Scholar 

  11. Ames CP, Acosta FL Jr, Chi J, Iyengar J, Muiru W, Acaroglu E, Puttlitz CM (2005) Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels. Spine 30(19):E562–E566

    Article  PubMed  Google Scholar 

  12. Liu H, Xu Y, Yang S-D, Wang T, Wang H, Liu FY, Ding WY (2017) Unilateral versus bilateral pedicle screw fixation with posterior lumbar interbody fusion for lumbar degenerative diseases: a meta-analysis. Med 96(21):e6882

    Article  Google Scholar 

  13. Zhao Y, Yang S, Ding W (2019) Unilateral versus bilateral pedicle screw fixation in lumbar fusion: A systematic review of overlapping meta-analyses. PLoS One 14(12):e0226848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ambati DV, Wright EK Jr, Lehman RA Jr, Kang DG, Wagner SC, Dmitriev AE (2015) Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J 15(8):1812–1822

    Article  PubMed  Google Scholar 

  15. Chen SH, Lin SC, Tsai WC, Wang CW, Chao SH (2012) Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery–a finite element analysis. BMC Musculoskelet Disord 13(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  16. Umale S, Yoganandan N, Baisden JL, Choi H, Kurpad SN (2022) A biomechanical investigation of lumbar interbody fusion techniques. J Mech Behav Biomed Mater 125:104961

    Article  PubMed  Google Scholar 

  17. Fagan MJ, Julian S, Mohsen AM (2002) Finite element analysis in spine research. Proc Inst Mech Eng 216(5):281–298

    Article  CAS  Google Scholar 

  18. Chen CS, Cheng CK, Liu CL, Lo WH (2001) Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23(7):483–491

    Article  CAS  PubMed  Google Scholar 

  19. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A Jr (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25(11):1351–1356

    Article  CAS  PubMed  Google Scholar 

  20. Rohlmann A, Bauer L, Zander T, Bergmann G, Wilke HJ (2006) Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech 39(6):981–989

    Article  PubMed  Google Scholar 

  21. Goel V, Monroe B, Gilbertson L, Brinckmann P (1995) Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3–L4 motion unit subjected to axial compressive loads. Spine 20(6):689–698

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto I, Panjabi MM, Crisco T, Oxland TOM (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14(11):1256–1260

    Article  CAS  PubMed  Google Scholar 

  23. Zander T, Rohlmann A, Klöckner C, Bergmann G (2003) Influence of graded facetectomy and laminectomy on spinal biomechanics. Eur Spine J 12(4):427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farrokhi MR, Yadollahikhales G, Gholami M, Mousavi SR, Mesbahi AR, Asadi-Pooya AA (2018) Clinical Outcomes of Posterolateral Fusion Versus Posterior Lumbar Interbody Fusion in Patients with Lumbar Spinal Stenosis and Degenerative Instability. Pain Physician 21(4):383–406

    Article  PubMed  Google Scholar 

  25. Yijian Z, Hao L, Huilin Y, Bin P (2018) Comparison of posterolateral fusion and posterior lumbar interbody fusion for treatment of degenerative spondylolisthesis: Analysis of spino-pelvic sagittal balance and postoperative chronic low back pain. Clin Neurol Neurosurg 171:1–5

    Article  PubMed  Google Scholar 

  26. Campbell RC, Mobbs RJ, Lu VM, Xu J, Rao PJ, Phan K (2017) Posterolateral Fusion Versus Interbody Fusion for Degenerative Spondylolisthesis: Systematic Review and Meta-Analysis. Global Spine J 7(5):482–490

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lu T, Lu Y (2019) Comparison of Biomechanical Performance Among Posterolateral Fusion and Transforaminal, Extreme, and Oblique Lumbar Interbody Fusion: A Finite Element Analysis. World Neurosurg 129:e890–e899

    Article  PubMed  Google Scholar 

  28. Vamvanij V, Ferrara LA, Hai Y, Zhao J, Kolata R, Yuan HA (2001) Quantitative changes in spinal canal dimensions using interbody distraction for spondylolisthesis. Spine 26(3):B1–B6

    Article  Google Scholar 

  29. Park JS, Kim YB, Hong HJ, Hwang SN (2005) Comparison between posterior and transforaminal approaches for lumbar interbody fusion. J Korean Neurosurg Soc 37(5):340–344

    Google Scholar 

  30. Lu P, Pan T, Dai T, Chen G, Shi K (2018) Is unilateral pedicle screw fixation superior than bilateral pedicle screw fixation for lumbar degenerative diseases: a meta-analysis. J Orthop Surg Res 13(1):296

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ren C, Qin R, Sun P, Wang P (2017) Effectiveness and safety of unilateral pedicle screw fixation in transforaminal lumbar interbody fusion (TLIF): a systematic review and meta-analysis. Arch Orthop Trauma Surg 137(4):441–450

    Article  PubMed  Google Scholar 

  32. Kim HJ, Kang KT, Chang BS, Lee CK, Kim JW, Yeom JS (2014) Biomechanical analysis of fusion segment rigidity upon stress at both the fusion and adjacent segments: a comparison between unilateral and bilateral pedicle screw fixation. Yonsei Med J 55(5):1386–1394

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang M, Sun G, Guo S, Zeng C, Yan M, Han Y, Xia D, Zhang J, Li X, Xiang Y, Pan J, Li L, Tan J (2017) The Biomechanical Study of Extraforaminal Lumbar Interbody Fusion: A Three-Dimensional Finite-Element Analysis. J Healthc Eng 2017:1–8

    Google Scholar 

  34. Slucky AV, Brodke DS, Bachus KN, Droge JA, Braun JT (2006) Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Spine J 6(1):78–85

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Nagaraj Manju Moger, Manish Kumar, Subrato Sarkar, Indra Vir Singh, Pankaj Kandwal;

Methodology: Shivam Saini, Manish Kumar, Subrato Sarkar;

Formal analysis and investigation: Nagaraj Manju Moger, Shivam Saini, Manish Kumar, Subrato Sarkar, Samarth Mittal;

Writing—original draft preparation: Nagaraj Manju Moger, Samarth Mittal, Syed Ifthekar, Kaustubh Ahuja;

Writing—review and editing: Manish Kumar, Subrato Sarkar;

Resources: Indra Vir Singh;

Supervision: Indra Vir Singh, Pankaj Kandwal.

Corresponding author

Correspondence to Pankaj Kandwal.

Ethics declarations

Presentation

The authors declare that any portion of the contents of the paper has not been presented previously.

Ethics approval

We conducted our study after obtaining institutional ethical clearance from the ethical committee of AIIMS Rishikesh, India.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Moger, N.M., Kumar, M. et al. Biomechanical analysis of Instrumented decompression and Interbody fusion procedures in Lumbar spine: a finite element analysis study. Med Biol Eng Comput 61, 1875–1886 (2023). https://doi.org/10.1007/s11517-023-02825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02825-y

Keywords

Navigation