Skip to main content
Log in

A review of bio-impedance devices

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Bio-impedance measurement analysis primarily refers to a safe and a non-invasive technique to analyze the electrical changes in living tissues on the application of low-value alternating current. It finds applications both in the biomedical and the agricultural fields. This paper concisely reviews the origin and measurement approaches for concepts and fundamentals of bio-impedance followed by a critical review on bio-impedance portable devices with main emphasis on the embedded system approach which is in demand due to its miniature size and present lifestyle preference of monitoring health in real time. The paper also provides a comprehensive review of various bio-impedance circuits with emphasis on the measurement and calibration techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Grimnes S, Martinsen O (2014) Bioimpedance and bioelectricity basics, 3rd edn. Academic Press, London, UK

    Google Scholar 

  2. Borelli E, Paolini G, Antoniazzi F, Barbiroli M, Benassi F, Chesani F, Costanzo A et al (2019) Habitat: an IoT solution for independent elderly. Sensors 19(5):1258

  3. Punj R, Kumar R (2019) Technological aspects of WBANs for health monitoring: a comprehensive review. Wireless Netw 25(3):1125–1157

    Article  Google Scholar 

  4. Rapin M, Braun F, Adler A et al (2019) Wearable sensors for frequency-multiplexed EIT and multilead ECG data acquisition. IEEE Trans Biomed Eng 66(3):810–820

    Article  PubMed  Google Scholar 

  5. Piuzzi E, Pisa S, Pittella E, Podesta L, Sangiovanni S (2019) Low-cost and portable impedance plethysmography system for the simultaneous detection of respiratory and heart activities. IEEE Sens J 19(7):2735–2746

    Article  Google Scholar 

  6. Summers RL, Shoemaker WC, Peacock WF, Ander DS, Coleman TG (2003) Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med 10(6):669–680

  7. Majumder S, Mondal T, Deen MJ (2019) A simple, low-cost and efficient gait analyzer for wearable healthcare applications. IEEE Sens J 19(6):2320–2329

    Article  Google Scholar 

  8. Thomasset MA (1962) Proprietes bioelectrique des tissuş, Mesures de l’impedance en clinique" [Bioelectric properties of tissue. Impedance measurement in clinical medicine. Significance of curves obtained]. Lyon Med 94:107–18

    CAS  PubMed  Google Scholar 

  9. Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23(5):1226–1243

    Article  PubMed  Google Scholar 

  10. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351

    Article  CAS  Google Scholar 

  11. Cole KS (1940) Permeability and impermeability of cell membranes for ions. Proc Cold Spring Harbor Symp Quant Biol 8:110–122

    Article  CAS  Google Scholar 

  12. De Lorenzo A, Candeloro N, Andreoli A, Deurenberg P (1995) Determination of intracellular water by multifrequency bioelectrical impedance. Ann Nutr Metab 39(3):164–176

    Article  Google Scholar 

  13. Freeborn TJ, Maundy B, Elwakil AS (2014) Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med Biol Eng Compu 52(9):749–758

    Article  Google Scholar 

  14. Hayden RI, Moyse CA, Calder FW, Crawford DP, Fensom DS (1969) Electrical impedance studies on potato and alfalfa tissue. J Experim Botany 20(2):177–200

    Article  Google Scholar 

  15. Zhang MIN, Stout DG, Willison JHM (1990) Electrical impedance analysis in plant Tissues3. J. Experim Bot 41(3):371–380

    Article  Google Scholar 

  16. Zhang MIN, Willison JHM (1991) Electrical impedance analysis in plant Tissues11. J Experim Bot 42(11):1465–1475

    Article  Google Scholar 

  17. Zhang MIN, Willison JHM (1992) Electrical impedance analysis in plant tissues: in vivo detection of freezing injury. Can J Bot 70(11):2254–2258

    Article  Google Scholar 

  18. Ionescu CM, De Keyser R (2008) Time domain validation of a fractional order model for human respiratory system. In MELECON 2008-The 14th IEEE Mediterranean Electrotechnical Conference. IEEE, pp 89–95

  19. Tiitta M, Olkkonen H (2002) Electrical impedance spectroscopy device for measurement of moisture gradients in wood. Rev Sci Instrum 73(8):3093–3100

    Article  CAS  Google Scholar 

  20. Repo T, Laukkanen J, Silvennoinen R (2005) Measurement of the tree root growth using electrical impedance spectroscopy. Silva Fennica 39(2):159–166

    Article  Google Scholar 

  21. Magin RL, Ovadia M (2008) Modeling the cardiac tissue electrode interface using fractional calculus. J Vib Control 14(9–10):1431–1442

    Article  Google Scholar 

  22. Huang WH, Chui CK, Teoh SH, Chang SK (2012) A multiscale model for bioimpedance dispersion of liver tissue. IEEE Trans Biomed Eng 59(6):1593–1597

    Article  CAS  PubMed  Google Scholar 

  23. Lizhi H, Toyoda K, Ihara I (2008) Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. J Food Eng 88:151–158

    Article  Google Scholar 

  24. Yang J, Zhao KS, He YJ (2016) Quality evaluation of frying oil deterioration by dielectric spectroscopy. J Food Eng 180:69–76

    Article  CAS  Google Scholar 

  25. Ragni L, Iaccheri E, Cevoli C, Berardinelli A, Bendini A, GallinaToschi T (2013) A capacitive technique to assess water content in extra virgin olive oils. J Food Eng 116:246–252

    Article  CAS  Google Scholar 

  26. Yang Y, Li Q, Yu X, Chen X, Wang Y (2014) A novel method for determining peroxide value of edible oils using electrical conductivity. Food Control 39:198–203

    Article  CAS  Google Scholar 

  27. Roa LM, Naranjo D, Reina-Tosina J et al (2013) Applications of bioimpedance to end stage renal disease (ESRD). Stud Comput Intell 404:689–769

    Article  Google Scholar 

  28. Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S (2004) Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans Biomed Eng 51:2097–2102

    Article  PubMed  Google Scholar 

  29. Chowdhury D, Chattopadhyay M (2021) Study and classification of cell bio-impedance signature for identification of malignancy using artificial neural network. IEEE Trans Instrum Meas 70:1–8

    Article  Google Scholar 

  30. Penza V, Cheng Z, Koskinopoulou M, Acemoglu A, Caldwell DG, Mattos LS (2021) Vision-guided autonomous robotic electrical bio-impedance scanning system for abnormal tissue detection. IEEE Trans Med Robot Bionics 3(4):866–877

    Article  Google Scholar 

  31. Baghbani R, Shadmehr MB, Ashoorirad M, Molaeezadeh SF, Moradi MH (2021) Bioimpedance spectroscopy measurement and classification of lung tissue to identify pulmonary nodules. IEEE Trans Instrum Meas 70:1–7

    Article  Google Scholar 

  32. Cheng Zhuoqi et al (2022) Active search of subsurface lymph nodes using robot-assisted electrical impedance scanning. IEEE Trans Instrum Meas 71:1–11

    Google Scholar 

  33. Harker FR, Maindonald JH (1994) Ripening of nectarine fruit. Plant Physiol 106:165–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. AboBakr A, Mohsen M, Said LA, Madian AH, Elwakil AS, Radwan AG (2019) Banana ripening and corresponding variations in bioimpedance and glucose levels, vol 1. In 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES). IEEE, pp 130–133

  35. Aboalnaga BM, Said LA, Madian AH, Elwakil AS, Radwan AG (2019) Cole bio-impedance model variations in daucus carota sativus under heating and freezing conditions. IEEE Access 7:113254–113263

    Article  Google Scholar 

  36. Mbezi MT, Fouda H, Tabi CB (2015) Estimated photosynthetic activity from its electrical impedance spectroscopy. Amer Sci Res J Eng Technol Sci 13(1):178–193

    Google Scholar 

  37. Harker FR, Forbes SK (1997) Ripening and development of chilling injury in persimmon fruit: an electrical impedance study. New Zeal J Crop Hort 25:149–157

    Article  Google Scholar 

  38. Bauchot AD, Harker FR, Arnold WM (2000) The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biol Tec 18:9–18

    Article  Google Scholar 

  39. Jackson PJ, Harker FR (2000) Apple bruise detection by electrical impedance measurement. HortSci 35:104–107

    Article  Google Scholar 

  40. Rehman M, Abu Izneid AJA, Abdullah MZ, Arshad MR (2011) Assessment of quality of fruits using impedance spectroscopy. Int J Food Sci Tech 46:1303–1309

    Article  CAS  Google Scholar 

  41. Juansah J, Budiastra IW, Dahlan K, Seminar KB (2012) Electrical behavior of garut citrus fruit during ripening changes in resistance and capacitance models of internal fruits. Int J Eng Tech 12:1–8

    Google Scholar 

  42. Chowdhury A, KantiBera T, Ghoshal D, Chakraborty B (2017) Electrical impedance variations in banana ripening: an analytical study with electrical impedance spectroscopy. J Food Process Eng 40(2):12387

    Article  Google Scholar 

  43. Chowdhury A, Singh P, Bera TK, Ghoshal D, Chakraborty B (2017) Electrical impedance spectroscopic study of mandarin orange during ripening. J Food Meas Charact 11(4):1654–1664

    Article  Google Scholar 

  44. Kriˇzaj D (2018) Basics of numerical simulations of bioimpedance phenomena. in Bioimpedance in Biomedical Applications and Research. Springer, Cham, pp 101–116

  45. Xu K, Lu Y, Takei K (2019) Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 4(3):1800628

  46. Lukaski H (1996) Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am J Clin Nutr 64(3):397S–404S

  47. Hanai T (1968) Electrical properties of emulsions. Academic Press, London, UK, Sherman PH Emulsion Science, pp 354–477

    Google Scholar 

  48. Matthie JR (2005) Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol 99(2):780–781

  49. Jaffrin MY, Morel H (2008) Body fluid volume measurements by impedance: a review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Engin Physics 30(10):1257–1269

  50. Barnett A, Bagno S (1936) The physiological mechanisms involved in the clinical measure of phase angle. Am J Physiol 114(2):366–382

  51. Buchholz AC, Bartok C, Schoeller DA (2004) The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract 19(5):433–446

    Article  PubMed  Google Scholar 

  52. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249

    Article  CAS  PubMed  Google Scholar 

  53. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41(11):2271–2293

    Article  CAS  PubMed  Google Scholar 

  54. Van Loan MD, Withers P, Matthie J, Mayclin PL (1993) Use of bioimpedance spectroscopy to determine extracellular fluid, intracellular fluid, total body water, and fat-free mass. Human body composition, Springer, US, pp 67–70

    Google Scholar 

  55. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Scharfetter H (2004) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23(5):1226–1243

    Article  PubMed  Google Scholar 

  56. Zhang M, Willison J (1992) Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can J Plant Sci 72(2):545–553

    Article  Google Scholar 

  57. Bhardwaj P, Rai DV, Garg ML, Mohanty BP (2018) Potential of electrical impedance spectroscopy to differentiate between healthy and osteopenic bone. Clin Biomech 57:81–88

    Article  Google Scholar 

  58. De Lorenzo A, Andreoli A, Matthie J, Withers P (1997) Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol 82(5):1542–1558

    Article  PubMed  Google Scholar 

  59. Kassanos P, Constantinou L, Triantis IF, Demosthenous A (2014) An integrated analog readout for multi-frequency bioimpedance measurements. IEEE Sens J 14(8):2792–2800

    Article  Google Scholar 

  60. Chester CJ, Gaynor PT, Jones RD, Huckabee M (2014) Electrical bioimpedance measurement as a tool for dysphagia visualisation. Healthc Technol Lett 1(3):115–118

    Article  PubMed  PubMed Central  Google Scholar 

  61. Y´ufera A, Rueda A (2010) Design of a CMOS closed-loop system with applications to bio-impedance measurements. Microelectron J 41(4):231–239

    Article  Google Scholar 

  62. Kassanos P, Triantis IF, Demosthenous A (2013) A CMOS magnitude/phase measurement chip for impedance spectroscopy. IEEE Sens J 13(6):2229–2236

    Article  Google Scholar 

  63. Kweon S-J, Park J-H, Shin S, Yoo S-S, Yoo H-J (2017) A reconfigurable time-to-digital converter based on time stretcher and chain-delay-line for electrical bioimpedance spectroscopy. Proc 60th IEEE Int Midwest Symp Circ Syst MWSCAS 2017 2017:1037–1040

    Article  Google Scholar 

  64. Hersek S, Toreyin H, Inan OT (2016) A robust system for longitudinal knee joint edema and blood flow assessment based on vector bio-impedance measurements. IEEE Trans Biomed Circuits Syst 10(3):545–555

    Article  PubMed  Google Scholar 

  65. Hersek S, Toreyin H, Teague CN et al (2017) Wearable vector electrical bio-impedance system to assess knee joint health. IEEE Trans Biomed Eng 64(10):2353–2360

    Article  PubMed  Google Scholar 

  66. Sanchez B, Vandersteen G, Bragos R, Schoukens J (2012) Basics of broadband impedance spectroscopy measurements using periodic excitations. Meas Sci Technol 23(10):105501

  67. Min M, Parve T, Ronk A, Annus P, Paavle T (2007) Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement. IEEE Trans Instrum Meas 56(4):1365–1372

    Article  Google Scholar 

  68. Huertas G, Maldonado A, Yufera A, Rueda A, Huertas JL (2015) The bio-oscillator: a circuit for cell-culture assays. IEEE Trans Circuits Syst II Express Briefs 62(2):164–168

    Google Scholar 

  69. Parente FR, Di Giovanni S, Ferri G, Stornelli V, Pennazza G, Santonico M (2018) An analog bootstrapped bio-signal read-out circuit with common-mode impedance two-electrode compensation. IEEE Sens J 18(7):2861–2869

    Article  Google Scholar 

  70. Liu Y, Qiao X, Li G, Lin L (2016) An improved device for bio-impedance deviation measurements based on 4-electrode half bridge. Rev Sci Instrum 87(10):105107

  71. Li N, Xu H, Wang W, Zhou Z, Qiao G, D-U Li D (2013) A high-speed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method. Meas Sci Technol 24(6):065701.

  72. Bag JC, Wi H, Oh TI, McEwan AL, Woo EJ (2013) An amplitude-to-time conversion technique suitable for multichannel data acquisition and bio-impedance imaging. IEEE Trans Biomed Circuits Syst 7(3):349–354

    Article  Google Scholar 

  73. Sanchez B, Vandersteen G, Bragos R, Schoukens J (2011) Optimal multisine excitation design for broadband electrical impedance spectroscopy. Meas Sci Technol 22(11):115601

  74. Sanchez B, Schoukens J, Bragos R, Vandersteen G (2011) Novel estimation of the electrical bioimpedance using the local polynomial method application to in vivo real-time myocardium tissue impedance characterization during the cardiac cycle. IEEE Transactions on Biomedical Engineering 58(12):3376–3385

  75. Shi X, You F, Ji Z, Fu F, Liu R, Dong X (2010) Digital demodulation in data acquisition system for multi-frequency electrical impedance tomography. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE, pp 1–3

  76. Gracia J, Seppa VP, Viik J, Hyttinen J (2012) Multilead measurement system for the time-domain analysis of bio-impedance magnitude. IEEE Trans Biomed Eng 59(8):2273–2280

    Article  CAS  PubMed  Google Scholar 

  77. Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D Appl Phys 40:61–70

    Article  CAS  Google Scholar 

  78. Zhang X, Hatamie A, Ewing AG (2020) Nanoelectrochemical analysis inside a single living cell. Curr Opin Electrochem 22:94–101

    Article  CAS  Google Scholar 

  79. Gawad S, Schild L, Renaud PH (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1:76–82

    Article  CAS  PubMed  Google Scholar 

  80. Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A (2010) Microfluidic impedance-based flow cytometry. Cytometry part A 77(7):648–666

  81. Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J (2016) A review of impedance measurements of whole cells. Biosens Bioelectron 77:824–836

    Article  CAS  PubMed  Google Scholar 

  82. Chen J, Zheng Y, Tan Q, Shojaei-Baghini E, Zhang YL, Li J, Prasad P, You L, Wu XY, Sun Y (2011) Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. Lab Chip 11:3174–3181

    Article  CAS  PubMed  Google Scholar 

  83. Sriphutkiat Y, Zhou Y (2017) Particle accumulation in a microchannel and its reduction by a standing surface acoustic wave (SSAW). Sensors 17:106

    Article  PubMed  PubMed Central  Google Scholar 

  84. Malleo D, Nevill JT, Lee LP, Morgan H (2010) Continuous differential impedance spectroscopy of single cells. Microfluid Nanofluid 9:191–198

    Article  PubMed  Google Scholar 

  85. Younghak C, Hyun Soo K, Frazier AB, Chen ZG, Dong Moon S, Han A (2009) Whole-cell impedance analysis for highly and poorly metastatic cancer cells. J Microelectromech Syst 18:808–817

    Article  Google Scholar 

  86. Lan KC, Jang LS (2011) Integration of single-cell trapping and impedance measurement utilizing microwell electrodes. Biosens Bioelectron 26:2025–2031

    Article  CAS  PubMed  Google Scholar 

  87. Xu B, Shi Y, Lao Z, Ni J, Li G, Hu Y, Li J, Chu J, Wu D, Sugioka K (2018) Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. Lab Chip 18:442–450

    Article  CAS  PubMed  Google Scholar 

  88. Guo X, Zhu R (2016) Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array. Sci Rep 6:31392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Asphahani F, Zhang M (2007) Cellular impedance biosensors for drug screening and toxin detection. Analyst 132:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kovacs GTA (2003) Electronic sensors with living cellular components. Proc IEEE 91:915–929

    Article  CAS  Google Scholar 

  91. Geng Y, Zhu Z, Zhang Z, Xu F, Marchisio MA, Wang Z, Pan D, Zhao X, Huang QA (2021) Design and 3D modelling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Electrophor 42:1996–2009

    Article  CAS  Google Scholar 

  92. Nguyen TA, Yin T-I, Reyes D, Urban GA (2013) Microfluidic chip with integrated electrical cell-Impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem 85:11068–11076

    Article  CAS  PubMed  Google Scholar 

  93. Tsai SL, Wang MH (2016) 24 h observation of a single HeLa cell by impedance measurement and numerical modeling. Sens Actuators B Chem 229:225–231

    Article  CAS  Google Scholar 

  94. AboBakr A, Mohsen M, Said LA, Madian AH, Elwakil AS, Radwan AG (2019) Toward portable bio-impedance devices. In 2019 Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA). IEEE, pp 1–4

  95. Chabowski K, Piasecki T, Dzierka A, Nitsch K (2015) Simple wide frequency range impedance meter based on ad5933 integrated circuit. Metrol Meas Syst 22(1):13–24

    Article  Google Scholar 

  96. Ibba P et al (2021) Design and validation of a portable AD5933–based impedance analyzer for smart agriculture. IEEE Access 9:63656–63675. https://doi.org/10.1109/ACCESS.2021.3074269

    Article  Google Scholar 

  97. Breniuc L, David V, Haba C-G (2014) Wearable impedance analyzer based on AD5933. In 2014 International Conference and Exposition on Electrical and Power Engineering (EPE). IEEE, pp 585–590

  98. Harder R et al (2016) Smart multi-frequency bioelectrical impedance spectrometer for BIA and BIVA applications. IEEE Trans Biomed Circ Syst 10(4):912–919

    Article  Google Scholar 

  99. Teague NC et al (2020) A wearable, multimodal sensing system to monitor knee joint health. IEEE Sensors J 20(18):10323–10334

    Article  CAS  Google Scholar 

  100. Qiu C et al (2022) A wearable bioimpedance chest patch for real-time ambulatory respiratory monitoring. IEEE Trans Biomed Eng 69(9):2970–2981. https://doi.org/10.1109/TBME.2022.3158544

  101. Istanbullu M, Avci M (2020) An ANN-based single calibration impedance measurement system for skin impedance range. IEEE Sens J 21(3):3776–3783

    Google Scholar 

  102. Ibrahim B, Jafari R (2022) Cuffless blood pressure monitoring from a wristband with calibration-free algorithms for sensing location based on bio-impedance sensor array and autoencoder. Sci Rep 12(1):1–14

    Article  Google Scholar 

  103. Dutt AG, Verling M, Karlen W (2020) Wearable bioimpedance for continuous and context-aware clinical monitoring. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp 3985–3988

  104. Van Steenkiste T et al (2020) Portable detection of apnea and hypopnea events using bio-impedance of the chest and deep learning. IEEE J Biomed Health Informa 24(9):2589–2598

    Article  Google Scholar 

  105. Songkakul T et al (2021) Wearable bioimpedance hydration monitoring system using conformable AgNW electrodes. 2021 IEEE Sensors, IEEE.

  106. Critcher S, Freeborn T (2022) System performance and user feedback regarding wearable bioimpedance system for multi-site knee tissue monitoring: free-living pilot study with healthy adults. Frontiers in Electronics. https://doi.org/10.3389/felec.2022.824981

  107. Freeborn TJ, Maundy BJ, Elwakil AS (2013) Cole impedance extractions from the step-response of a current excited fruit sample. Comput Electron Agric 98:100–108

    Article  Google Scholar 

  108. Al-Ali AA,. Maundy BJ, Elwakil A (2018) “Design and implementation of a bio-impedance analyzer based on the kramers-kronig transform. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–5

  109. Al-Ali AA, Elwakil AS, Maundy BJ (2018) Bio-impedance measurements with phase extraction using the kramers-kronig transform: application to strawberry aging. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, pp 468–471

  110. Vastarouchas C, Psychalinos C, Elwakil AS, Al-Ali AA (2019) Novel two-measurements-only cole-cole bio-impedance parameters extraction technique. Meas 131:394–399

    Article  Google Scholar 

  111. Mohsen M, Said LA, Madian AH, Elwakil AS, Radwan AG (2019) Using meta-heuristic optimization to extract bio-impedance parameters from an oscillator circuit. In 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS). IEEE, pp 1–4

  112. Mohsen M, Said LA, Elwakil AS, Madian AH, Radwan AG (2020) Extracting optimized bio-impedance model parameters using different topologies of oscillators. IEEE Sensors J 20(17):9947–9954

    Article  CAS  Google Scholar 

  113. Meade ML (1983) Lock-in amplifiers: principles and applications. IEE Electrical Measurement Series, ark:/13960/t23c2hb4f

  114. Wenn D (2007) Implementing digital lock-in amplifiers using the dsPIC®DSC. Appl Note AN1115, pp 1–12

  115. Aguirre J, Medrano N, Calvo B, Celma S (2011) Lock-in amplifier for portable sensing systems. Electron Lett 47(21):1172

    Article  Google Scholar 

  116. Li N, Wang W, Xu H, Yu H, Diao J, Li DDU (2013) Wide-bandwidth biological impedance spectroscopy system based on the digital lock-in technique. Spectrosc Lett 46(7):476–482

    Article  CAS  Google Scholar 

  117. Caplan LC, Stern R (1971) Inexpensive lock-in amplifier. Rev Sci Instrum 42:689

    Article  Google Scholar 

  118. Gervasoni G, Carminati M, Ferrari G (2017) Switched ratiometric lock in amplifier enabling sub-ppm measurements in a wide frequency range. Rev Sci Instrum 88(10):104704

    Article  CAS  PubMed  Google Scholar 

  119. Giaconia G, Greco G, Mistretta L, Rizzo R (2017) Exploring FPGA based lock-in techniques for brain monitoring applications. Electron 6(1):18

    Article  Google Scholar 

  120. Divakar D, Mahesh K, Varma MM, Sen P (2018) FPGA-based lock-in amplifier for measuring the electrical properties of individual cells. In 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, pp 1–5

  121. De Marcellis A et al (2007) An integrated analog lock-in amplifier for low voltage low-frequency sensor interface. In 2007 2nd International Workshop on Advances in Sensors and Interface. IEEE, pp 1–5

  122. Webster JG (ed) (1995) Design of Cardiac Pacemakers. IEEE Press, Piscataway, New Jersey

    Google Scholar 

  123. Maya-Hernández PM, Sanz-Pascual MT, Calvo B (2014) CMOS low-power lock-in amplifiers with signal rectification in current domain. IEEE Trans Instrum Meas 64(7):1858–1867

    Article  Google Scholar 

  124. Cho YC, Kim MS, Yoon JO (2013) A study on the electrical difference for the limbs and thoracic impedance using real-time bio-impedance measurement system. J Korea Ind Inf Syst Res 18(6):9–16

    Google Scholar 

  125. Moe AE, Marx SR, Bhinderwala I, Wilson DM (2004) A miniaturized lock-in amplifier design suitable for impedance measurements in cells [biological cells]. In SENSORS, 2004 IEEE. IEEE, pp 215–218

  126. Min M, Parve T (2007) Improvement of lock-in electrical bio-impedance analyzer for implantable medical devices. IEEE Trans Instrum Meas 56(3):968–974

    Article  Google Scholar 

  127. Stewart GN (1899) The changes produced by the growth of bacteria in the molecular concentration and electrical conductivity of culture media. J Exp Med 4:235–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fistenberg-Eden R (1983) Rapid estimation of the number of microorganisms in raw meat by impedance measurement. Food Technol 37:64–70

    Google Scholar 

  129. Grossi M, Lanzoni M, Pompei A, Lazzarini R, Matteuzzi D, Riccò B (2008) Detection of microbial concentration in ice-cream using the impedance technique. Biosens Bioelectron 23:1616–1623

    Article  CAS  PubMed  Google Scholar 

  130. Grossi M, Lazzarini R, Lanzoni M, Riccò B (2011) A novel technique to control ice-cream freezing by electrical characteristics analysis. J Food Eng 106:347–354

    Article  Google Scholar 

  131. Grossi M, Lanzoni M, Pompei A, Lazzarini R, Matteuzzi D, Riccò B (2011) A portable biosensor system for bacterial concentration measurements in cow’s raw milk. In 2011 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, pp 132–137

  132. Hardy D, Kraeger SJ, Dufour SW, Cady P (1977) Rapid Detection of Microbial Contamination in Frozen Vegetables by Automated Impedance Measurements. Appl Environ Microb 34:14–17

    Article  CAS  Google Scholar 

  133. Settu K, Chen CJ, Liu JT, Chen CL, Tsai JZ (2015) Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Biosens Bioelectron 66:s244-250

    Article  Google Scholar 

  134. Kumar G, Kasiviswanathan U, Mukherjee S, Mahto SK, Sharma N, Patnaik R (2019) Changes in electrolyte concentrations alter the impedance during ischemia-reperfusion injury in rat brain. Physiol Meas 40(10):105004

    Article  PubMed  Google Scholar 

  135. Bora DJ, Dasgupta R (2020) Various skin impedance models based on physiological strati_cation. IET Syst Biol 14(3):147–159

    Article  PubMed  PubMed Central  Google Scholar 

  136. Simi¢-Krsti¢ JB, Kalauzi AJ, Ribar SN, Matija LR, Misevic GN (2014) Electrical properties of human skin as aging biomarkers. Experim. Gerontol 57:163–167

    Article  Google Scholar 

  137. Fu B, Freeborn T (2019) Electrical equivalent network modeling of forearm tissue bioimpedance. n 2019 SoutheastCon. IEEE, pp 1–7

  138. Sanchez B, Li J, Geisbush T, Bardia RB, Rutkove SB (2016) Impedance alterations in healthy and diseased mice during electrically induced muscle contraction. IEEE Trans Biomed Eng 63(8):1602–1612

    Article  PubMed  Google Scholar 

  139. Khalil S, Mohktar M, Ibrahim F (2014) The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14(6):10895–10928

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gupta PP, Fonarow GC, Horwich TB (2015) Obesity and the obesity paradox in heart failure. Can J Cardiol 31(2):195–202

    Article  PubMed  Google Scholar 

  141. Hocking S, Samocha-Bonet D, Milner K-L, Greenfield JR, Chisholm DJ (2013) Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev 34(4):463–500

    Article  CAS  PubMed  Google Scholar 

  142. Widen EM, Gallagher D (2014) Body composition changes in pregnancy: measurement, predictors and outcomes. Eur J Clin Nutr 68(6):643–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shuster A, Patlas M, Pinthus JH, Mourtzakis M (2012) The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 85(1009):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Toomey CM, Cremona A, Hughes K, Norton C, Jakeman P (2015) A review of body composition measurement in the assessment of health. Top Clin Nutr 30(1):16–32

    Article  Google Scholar 

  145. Ackland TR, Lohman TG, Sundgot-Borgen J et al (2012) Current status of body composition assessment in sport: review and position statement on behalf of the Ad Hoc research working group on body composition health and performance, under the auspices of the I.O.C. medical commission. Sports Med 42(3):227–249

    Article  PubMed  Google Scholar 

  146. SherwoodChair A, Allen MT, Fahrenberg J, Kelsey RM, Lovallo WR, Doornen LJ (1990) Methodological guidelines for impedance cardiography. Psychophysiol 27(1):1–23

    Article  Google Scholar 

  147. Mły´nczak M, Niewiadomski W, ˙Zyli´nski M, Cybulski G (2015) Verification of the respiratory parameters derived from impedance pneumography during normal and deep breathing in three body postures. In 6th European Conference of the International Federation for Medical and Biological Engineering. Springer, Cham, pp 881–884

  148. Li N, Xu H, Zhou Z, Xin J, Sun Z, Xu X (2013) Reconfigurable bioimpedance emulation system for electrical impedance tomography system validation. IEEE Trans Biomed Circuits Syst 7(4):460–468

    Article  PubMed  Google Scholar 

  149. Zhang J, Yang B, Li H et al (2017) Anovel 3D-printedheadphantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography. Sci Rep 7(1):4608

    Article  PubMed  PubMed Central  Google Scholar 

  150. Frerichs I, Amato M, van Kaam AH et al (2017) Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group. Thorax 72(1):83–93

    Article  PubMed  Google Scholar 

  151. Richard JC, Pouzot C, Gros A et al (2009) Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: an experimental study. Critical Care 13(3):1–9

  152. Critchley H, Nagai Y (2013) Electrodermal activity (EDA). Encyclopedia of behavioral medicine 78:666–669

  153. Surowiec A, Stanislaw SS, Barr JR, Swarup A (1988) Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans Biomed Eng 35:257–263

    Article  CAS  PubMed  Google Scholar 

  154. Morimoto T, Kinouchi Y, Iritani T et al (1990) Measurement of the electrical bioimpedance of breast tumors. Eur Surg Res 22:86–92

    Article  CAS  PubMed  Google Scholar 

  155. Chauveau N, Hamzaoui L, Rochaix P, Rigaud B, Voigt JJ, Morucci JP (1999) Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopy. Ann N Y Acad Sci 873:42–50

    Article  CAS  PubMed  Google Scholar 

  156. Ohmine Y, Morimoto T, Kinouchi Y et al (2004) Basic study of new diagnostic modality according to non-invasive measurement of the electrical conductivity of tissues. J Med Invest 51:218–225

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research work is supported by University Grants Commission, Government of India in the form of Maulana Azad National Fellowship (MANF) (210510145558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farooq A. Khanday.

Ethics declarations

Ethics approval

We declare that the manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Showkat, I., Khanday, F.A. & Beigh, M.R. A review of bio-impedance devices. Med Biol Eng Comput 61, 927–950 (2023). https://doi.org/10.1007/s11517-022-02763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02763-1

Keywords

Navigation