Skip to main content
Log in

Balance on different unstable supports: a complementary approach based on linear and non-linear analyses

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Maintenance of postural control is a complex task that requires the integration of different sensory-motor processes. To improve postural control, balance training is often implemented using unstable surfaces. Little is known, however, about how different surfaces compare in terms of postural control strategy. Non-linear dynamical system analysis, like recurrent quantification analysis (RQA) applied to the center of pressure (CoP) trajectory, represents a useful tool in this respect. The aim of this study is to investigate the effects of different unstable supports on the CoP trajectory through a complementary approach based on linear and non-linear analyses. Seventeen healthy adults performed barefoot single-leg balance trials on a force plate and on three different balance training devices (soft disc, foam pad, and pillow). Sets of parameters were extracted from the CoP trajectories using classical stabilometric analysis (sway path, mean velocity, root mean square) and RQA (percent recurrence and determinism, maximum line length, entropy). Both classical and RQA analyses highlighted significant differences between stable (force plate) and unstable conditions (p < 0.001). Conversely, only classical stabilometric parameters showed significant differences among the considered balance training devices, indicating that the different characteristics of the devices do not influence the dynamic/temporal structure of the CoP trajectory.

Graphical abstract

Analysis of the center of pressure trajectory during single-leg standing on three different balance training devices and on a rigid surface using both linear and non-linear techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP:

Anteroposterior

CoP:

Center of pressure

ED:

Embedding dimension

Ent:

Entropy

EVA:

Ethylene vinyl acetate

MaxLine:

Maximum line length

ML:

Mediolateral

MV:

Mean velocity

RMS:

Root mean square

RQA:

Recurrent quantification analysis

SP:

Sway path

%Det:

Percent determinism

%Rec:

Percent recurrence

References

  1. Forbes PA, Chen A, Blouin JS (2018) Sensorimotor control of standing balance. Handb Clin Neurol 159:61–83. https://doi.org/10.1016/B978-0-444-63916-5.00004-5

    Article  PubMed  Google Scholar 

  2. Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118. https://doi.org/10.1152/jn.2002.88.3.1097

    Article  CAS  PubMed  Google Scholar 

  3. Roncesvalles MNC, Woollacott MH, Jensen JL (2001) Development of lower extremity kinetics for balance control in infants and young children. J Mot Behav 33:180–192. https://doi.org/10.1080/00222890109603149

    Article  CAS  PubMed  Google Scholar 

  4. Mickle KJ, Munro BJ, Steele JR (2011) Gender and age affect balance performance in primary school-aged children. J Sci Med Sport 14:243–248. https://doi.org/10.1016/j.jsams.2010.11.002

    Article  PubMed  Google Scholar 

  5. Piirtola M, Era P (2006) Force platform measurements as predictors of falls among older people - a review. Gerontol 52:1–16. https://doi.org/10.1159/000089820

    Article  Google Scholar 

  6. Hübscher M, Zech A, Pfeifer K et al (2010) Neuromuscular training for sports injury prevention: a systematic review. Med Sci Sports Exerc 42:413–421. https://doi.org/10.1249/MSS.0b013e3181b88d37

    Article  PubMed  Google Scholar 

  7. Zech A, Hübscher M, Vogt L et al (2009) Neuromuscular training for rehabilitation of sports injuries: a systematic review. Med Sci Sports Exerc 41:1831–1841. https://doi.org/10.1249/MSS.0b013e3181a3cf0d

    Article  PubMed  Google Scholar 

  8. Wong RMY, Chong KC, Law SW et al (2020) The effectiveness of exercises on fall and fracture prevention amongst community elderlies: a systematic review and meta-analysis. J Orthop Transl 24:58–65. https://doi.org/10.1016/j.jot.2020.05.007

    Article  CAS  Google Scholar 

  9. Zech A, Hübscher M, Vogt L et al (2010) Balance training for neuromuscular control and performance enhancement: a systematic review. J Athl Train 45:392–403. https://doi.org/10.4085/1062-6050-45.4.392

    Article  PubMed  PubMed Central  Google Scholar 

  10. Onigbinde AT, Awotidebe T, Awosika H (2009) Effect of 6 weeks wobble board exercises on static and dynamic balance of stroke survivors. Technol Heal Care 17:387–392. https://doi.org/10.3233/THC-2009-0559

    Article  Google Scholar 

  11. Ogaya S, Ikezoe T, Soda N, Ichihashi N (2011) Effects of balance training using wobble boards in the elderly. J Strength Cond Res 25:2616–2622. https://doi.org/10.1519/JSC.0b013e31820019cf

    Article  PubMed  Google Scholar 

  12. Kidgell D, Horvath D, Jackson B, Seymour P (2007) Effect of six weeks of dura disc and mini-trampoline balance training on postural sway in athletes with functional ankle instability. J Strength Cond Res 21:466–469

    PubMed  Google Scholar 

  13. Boccolini G, Brazzit A, Bonfanti L, Alberti G (2013) Using balance training to improve the performance of youth basketball players. Sport Sci Health 9:37–42. https://doi.org/10.1007/s11332-013-0143-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Brito Silva P, Oliveira AS, Mrachacz-Kersting N et al (2016) Strategies for equilibrium maintenance during single leg standing on a wobble board. Gait Posture 44:149–154. https://doi.org/10.1016/j.gaitpost.2015.12.005

    Article  Google Scholar 

  15. Bryanton MA, Bilodeau M (2019) The effect of vision and surface compliance on balance in untrained and strength athletes. J Mot Behav 51:75–82. https://doi.org/10.1080/00222895.2017.1423019

    Article  PubMed  Google Scholar 

  16. Haworth JL, Strang AJ, Hieronymus M, Walsh MS (2018) Temporal more than spatial regulation of sway is important for posture in response to an ultra-compliant surface. Somatosens Mot Res 35:45–51. https://doi.org/10.1080/08990220.2018.1445988

    Article  PubMed  Google Scholar 

  17. Cimadoro G, Paizis C, Alberti G, Babault N (2013) Effects of different unstable supports on EMG activity and balance. Neurosci Lett 548:228–232. https://doi.org/10.1016/j.neulet.2013.05.025

    Article  CAS  PubMed  Google Scholar 

  18. de Brito Silva P, Mrachacz-Kersting N, Oliveira AS, Kersting UG (2018) Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces. Hum Mov Sci 58:231–238. https://doi.org/10.1016/j.humov.2018.02.006

    Article  Google Scholar 

  19. Pai YC, Patton J (1997) Center of mass velocity-position predictions for balance control. J Biomech 30:347–354. https://doi.org/10.1016/S0021-9290(96)00165-0

    Article  CAS  PubMed  Google Scholar 

  20. Simoneau M, Corbeil P (2005) The effect of time to peak ankle torque on balance stability boundary: experimental validation of a biomechanical model. Exp Brain Res 165:217–228. https://doi.org/10.1007/s00221-005-2290-1

    Article  PubMed  Google Scholar 

  21. Scoppa F, Capra R, Gallamini M, Shiffer R (2013) Clinical stabilometry standardization. Basic definitions - acquisition interval - sampling frequency. Gait Posture 37:290–292. https://doi.org/10.1016/j.gaitpost.2012.07.009

    Article  PubMed  Google Scholar 

  22. Lemay J, Gagnon D, Nadeau S et al (2014) Center-of-pressure total trajectory length is a complementary measure to maximum excursion to better differentiate multidirectional standing limits of stability between individuals with incomplete spinal cord injury and able-bodied individuals. J Neuro Eng Rehabil 11:1–11

    Article  Google Scholar 

  23. Prieto TE, Myklebust JB, Hoffmann RG et al (1996) Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 43:956–966. https://doi.org/10.1109/10.532130

    Article  CAS  PubMed  Google Scholar 

  24. Riley MA, Balasubramaniam R, Turvey MT (1999) Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78. https://doi.org/10.1016/S0966-6362(98)00044-7

    Article  CAS  PubMed  Google Scholar 

  25. Ramdani S, Tallon G, Bernard PL, Blain H (2013) Recurrence quantification analysis of human postural fluctuations in older fallers and non-fallers. Ann Biomed Eng 41:1713–1725. https://doi.org/10.1007/s10439-013-0790-x

    Article  PubMed  Google Scholar 

  26. Cavanaugh JT, Guskiewicz KM, Stergiou N (2005) A nonlinear dynamic approach for evaluating postural control: new directions for the management of sport-related cerebral concussion. Sport Med 35:935–950. https://doi.org/10.2165/00007256-200535110-00002

    Article  Google Scholar 

  27. N Stergiou UH Buzzi MJ Kurz J Heidel (2004) Nonlinear tools in human movement. In: Stergiou N (ed) Innovative analyses of human movement, Human Kine. pp 63–90

  28. Duarte M, Zatsiorsky VM (2000) On the fractal properties of natural human standing. Neurosci Lett 283:173–176. https://doi.org/10.1016/S0304-3940(00)00960-5

    Article  CAS  PubMed  Google Scholar 

  29. Bottaro A, Casadio M, Morasso PG, Sanguineti V (2005) Body sway during quiet standing: is it the residual chattering of an intermittent stabilization process? Hum Mov Sci 24:588–615. https://doi.org/10.1016/j.humov.2005.07.006

    Article  PubMed  Google Scholar 

  30. Mazaheri M, Negahban H, Salavati M et al (2010) Reliability of recurrence quantification analysis measures of the center of pressure during standing in individuals with musculoskeletal disorders. Med Eng Phys 32:808–812. https://doi.org/10.1016/j.medengphy.2010.04.019

    Article  PubMed  Google Scholar 

  31. Eckmann JP, Oliffson Kamphorst O, Ruelle D (1987) Recurrence plots of dynamical systems Epl 4:973–977. https://doi.org/10.1209/0295-5075/4/9/004

    Article  Google Scholar 

  32. Webber CL, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76:965–973. https://doi.org/10.1152/jappl.1994.76.2.965

    Article  PubMed  Google Scholar 

  33. Apthorp D, Nagle F, Palmisano S (2014) Chaos in balance: non-linear measures of postural control predict individual variations in visual illusions of motion. PLoS ONE 9:e113897. https://doi.org/10.1371/journal.pone.0113897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balasubramaniam R, Riley MA, Turvey MT (2000) Specificity of postural sway to the demands of a precision task. Gait Posture 11:12–24

    Article  CAS  PubMed  Google Scholar 

  35. Ghomashchi H, Esteki A, Nasrabadi AM et al (2011) Dynamic patterns of postural fluctuations during quiet standing: a recurrence quantification approach. Int J Bifurc Chaos 21:1163–1172. https://doi.org/10.1142/S021812741102891X

    Article  Google Scholar 

  36. Negahban SN, Ravikumar P, Wainwright MJ, Yu B (2012) A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Stat Sci 27:538–557. https://doi.org/10.1214/12-STS400

    Article  Google Scholar 

  37. G Pellecchia K Shockley (2005) Application of recurrence quantification analysis: influence of cognitive activity on postural fluctuations. In: Riley MA, Van Orden GC (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences. pp 95–141

  38. Riley MA, Clark S (2003) Recurrence analysis of human postural sway during the sensory organization test. Neurosci Lett 342:45–48. https://doi.org/10.1016/S0304-3940(03)00229-5

    Article  CAS  PubMed  Google Scholar 

  39. Schmit JM, Regis DI, Riley MA (2005) Dynamic patterns of postural sway in ballet dancers and track athletes. Exp Brain Res 163:370–378. https://doi.org/10.1007/s00221-004-2185-6

    Article  PubMed  Google Scholar 

  40. Sylos Labini F, Meli A, Ivanenko YP, Tufarelli D (2012) Recurrence quantification analysis of gait in normal and hypovestibular subjects. Gait Posture 35:48–55. https://doi.org/10.1016/j.gaitpost.2011.08.004

    Article  Google Scholar 

  41. Stergiou N, Decker LM (2011) Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci 30:869–888. https://doi.org/10.1016/j.humov.2011.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  42. van den Hoorn W, Hodges PW, van Dieën JH, Kerr GK (2020) Reliability of recurrence quantification analysis of postural sway data A comparison of two methods to determine recurrence thresholds. J Biomech 107:109793. https://doi.org/10.1016/j.jbiomech.2020.109793

    Article  PubMed  Google Scholar 

  43. Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1:98–101. https://doi.org/10.1111/1467-8721.ep10768783

    Article  Google Scholar 

  44. Lee D, Kim H, An H et al (2018) Comparison of postural sway depending on balance pad type. J Phys Ther Sci 30:252–257. https://doi.org/10.1589/jpts.30.252

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mezzarane RA, Kohn AF (2007) Control of upright stance over inclined surfaces. Exp Brain Res 180:377–388. https://doi.org/10.1007/s00221-007-0865-8

    Article  PubMed  Google Scholar 

  46. Bizovska L, Janura M, Svoboda Z et al (2017) Intra- and inter-session reliability of traditional and entropy-based variables describing stance on a wobble board. Med Eng Phys 50:29–34. https://doi.org/10.1016/j.medengphy.2017.08.017

    Article  PubMed  Google Scholar 

  47. Baltich J, von Tscharner V, Zandiyeh P, Nigg BM (2014) Quantification and reliability of center of pressure movement during balance tasks of varying difficulty. Gait Posture 40:327–332. https://doi.org/10.1016/j.gaitpost.2014.04.208

    Article  PubMed  Google Scholar 

  48. Wälchli M, Ruffieux J, Mouthon A et al (2018) Is young age a limiting factor when training balance? Effects of child-oriented balance training in children and adolescents. Pediatr Exerc Sci 30:178–186. https://doi.org/10.1123/pes.2017-0061

    Article  Google Scholar 

  49. Verbecque E, da Costa PHL, Meyns P et al (2016) Age-related changes in postural sway in preschoolers. Gait Posture 44:116–122. https://doi.org/10.1016/j.gaitpost.2015.11.016

    Article  PubMed  Google Scholar 

  50. Chiari L, Rocchi L, Cappello A (2002) Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech 17:666–677. https://doi.org/10.1016/S0268-0033(02)00107-9

    Article  Google Scholar 

  51. Kantz H, Schreiber T (2003) Phase space methods. In: Kantz H, Schreiber T (eds) Nonlinear time series analysis, 2nd edn. Cambridge University Press, Cambridge, UK, pp 30–47

    Chapter  Google Scholar 

  52. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  PubMed  Google Scholar 

  53. Kennel M, Brown R, Abarbanel H (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403–3411. https://doi.org/10.2307/2554626

    Article  CAS  PubMed  Google Scholar 

  54. CL Webber JP Zbilut (2005) Recurrence quantification analysis of nonlinear dynamical systems. In: Riley MA, Van Orden GC (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences. pp 26–94

  55. Aickin M, Gensler H (1996) Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am J Public Health 86:726–728. https://doi.org/10.2105/AJPH.86.5.726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Riley MA, Baker AA, Schmit JM, Weaver E (2005) Effects of visual and auditory short-term memory tasks on the spatiotemporal dynamics and variability of postural sway. J Mot Behav 37:311–324. https://doi.org/10.3200/JMBR.37.4.311-324

    Article  CAS  PubMed  Google Scholar 

  57. Ivanenko YP, Levik YS, Talis VL, Gurfinkel VS (1997) Human equilibrium on unstable support: the importance of feet-support interaction. Neurosci Lett 235:109–112. https://doi.org/10.1016/S0304-3940(97)00721-0

    Article  CAS  PubMed  Google Scholar 

  58. Abrahamová D, Hlavacka F (2008) Age-related changes of human balance during quiet stance. Physiol Res 57:957–964

    Article  PubMed  Google Scholar 

  59. Shumway-Cook A, Horak FB (1986) Assessing the influence of sensory interaction on balance. Suggestion from the field Phys Ther 66:1548–1550. https://doi.org/10.1093/ptj/66.10.1548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the volunteers who kindly participated in the data acquisition. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

John McCamley: conceptualization, methodology, software, formal analysis, writing — original draft, writing — review and editing.

Elena Bergamini: conceptualization, methodology, formal analysis, writing — original draft, writing — review and editing, visualization, supervision

Eleni Grimpampi: conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing — review and editing, project administration, supervision

Corresponding author

Correspondence to Elena Bergamini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCamley, J., Bergamini, E. & Grimpampi, E. Balance on different unstable supports: a complementary approach based on linear and non-linear analyses. Med Biol Eng Comput 60, 863–873 (2022). https://doi.org/10.1007/s11517-022-02504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02504-4

Keywords

Navigation