Skip to main content
Log in

Statistical shape analysis of gravid uteri throughout pregnancy by a ray description technique

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In order to study the anatomical variability of the uterus induced by pregnancy, a parametrization of gravid uterine geometry based on principal component analysis (PCA) is proposed. Corresponding meshes used for PCA are created by a ray description technique applied to a reference mesh. A smoothed voxel-based methodology is applied to determine the reference mesh from a database of 11 real shapes produced by the FEMONUM project. The ray-based correspondence technique is compared to two existing methods (He, Giessen) as well as a proposed mixed method. Principal component analysis results are based on a database of 11 existing shapes. Results of the parametrization show that 90% of the total variance of the database can be represented with four new shape parameters and that a wide spectrum of shapes can be generated.

Proposed correspondence technique compared to existing methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. DAZ 3D Models and 3D Software by Daz 3D. https://www.daz3d.com/

  2. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483. https://doi.org/10.1145/235815.235821

    Article  Google Scholar 

  3. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24. https://doi.org/10.1109/34.993558

  4. Bibin L, Anquez J, de la Plata Alcalde JP, Boubekeur T, Angelini ED, Bloch I (2010) Whole-body pregnant woman modeling by digital geometry processing with detailed uterofetal unit based on medical images. IEEE Trans Biomed Eng 57(10):2346–2358. 2010

    Article  Google Scholar 

  5. Bookstein F (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585. https://doi.org/10.1109/34.24792

    Article  Google Scholar 

  6. Brechbühler C, Gerig G, Kübler O (1995) Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Underst 61(2):154–170. https://doi.org/10.1006/cviu.1995.1013. http://www.sciencedirect.com/science/article/pii/S1077314285710132

    Article  Google Scholar 

  7. Bryan R, Mohan PS, Hopkins A, Galloway F, Taylor M, Nair PB (2010) Statistical modelling of the whole human femur incorporating geometric and material properties. Med Eng Phys 32(1):57–65. https://doi.org/10.1016/j.medengphy.2009.10.008

    Article  Google Scholar 

  8. Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput-Aid Des 10(6):350–355. https://doi.org/10.1016/0010-4485(78)90110-0. http://www.sciencedirect.com/science/article/pii/0010448578901100

    Article  Google Scholar 

  9. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):10

    Google Scholar 

  10. Cootes T, Taylor C (1995) Combining point distribution models with shape models based on finite element analysis. Image Vis Comput 13 (5):403–409. https://doi.org/10.1016/0262-8856(95)99727-I. http://www.sciencedirect.com/science/article/pii/026288569599727I

    Article  Google Scholar 

  11. Dahdouh S, Varsier N, Serrurier A, De la Plata JP, Anquez J, Angelini ED, Wiart J, Bloch I (2014) A comprehensive tool for image-based generation of fetus and pregnant women mesh models for numerical dosimetry studies. Phys Med Biol 59(16):4583–4602. https://doi.org/10.1088/0031-9155/59/16/4583

    Article  CAS  Google Scholar 

  12. Dalal P, Munsell BC, Wang S, Tang J, Oliver K, Ninomiya H, Zhou X, Fujita H (2007) A fast 3D correspondence method for statistical shape modeling. In: 2007 IEEE Conference on computer vision and pattern recognition. pp 1–8. https://doi.org/10.1109/CVPR.2007.383143

  13. Davies R, Twining C, Cootes T, Waterton J, Taylor C (2002) A minimum description length approach to statistical shape modelling. IEEE Trans Med Imaging 21:525–37. https://doi.org/10.1109/TMI.2002.1009388

    Article  Google Scholar 

  14. Fitzgibbon A (2002) Robust registration of 2D and 3D point sets. Image Vis Comput 21:1145–1153. https://doi.org/10.1016/j.imavis.2003.09.004

    Article  Google Scholar 

  15. Fleute M, Lavallée S. (1998) Building a complete surface model from sparse data using statistical shape models: Application to computer assisted knee surgery. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention — MICCAI’98, Lecture notes in computer science. Springer, Berlin, pp 879–887. https://doi.org/10.1007/BFb0056276

  16. George PL (1996) Automatic mesh generation and finite element computation. In: Handbook of numerical analysis, finite element methods (part 2), numerical methods for solids (part 2), vol 4. Elsevier, pp 69–190. https://doi.org/10.1016/S1570-8659(96)80003-2. http://www.sciencedirect.com/science/article/pii/S1570865996800032

  17. van de Giessen M, Foumani M, Streekstra GJ, Strackee SD, Maas M, van Vliet LJ, Grimbergen KA, Vos FM (2010) Statistical descriptions of scaphoid and lunate bone shapes. J Biomech 43(8):1463–1469. https://doi.org/10.1016/j.jbiomech.2010.02.006

    Article  Google Scholar 

  18. van de Giessen M, Smitsman N, Strackee SD, van Vliet LJ, Grimbergen KA, Streekstra GJ, Vos FM (2009) A statistical description of the articulating ulna surface for prosthesis design. In: Proceedings of the sixth IEEE international conference on symposium on biomedical imaging: from nano to macro, Boston, Massachusetts, USA, pp 678–681

  19. Guennebaud G, Germann M, Gross M (2008) Dynamic sampling and rendering of algebraic point set surfaces. Comput Graph Forum 27(2):653–662. https://doi.org/10.1111/j.1467-8659.2008.01163.x

    Article  Google Scholar 

  20. Guennebaud G, Gross M (2007) Algebraic point set surfaces. ACM Trans Graph 26(3):23–9. https://hal.inria.fr/inria-00354998

    Article  Google Scholar 

  21. Harders M, Székely G. (2007) Using statistical shape analysis for the determination of uterine deformation states during hydrometra. Med Image Comput Comput Assist Interv 10(Pt 2):858–865. https://doi.org/10.1007/978-3-540-75759-7_104

    CAS  PubMed  Google Scholar 

  22. He Q, Christ SE, Karsch K, Moffitt AJ, Peck D, Duan Y (2009) Detecting 3D Corpus Callosum abnormalities in phenylketonuria. Int J Comput Biol Drug Des 2(4):289–301. https://doi.org/10.1504/IJCBDD.2009.030762

    Article  Google Scholar 

  23. He Q, Duan Y, Karsch K, Miles J (2010) Detecting corpus callosum abnormalities in autism based on anatomical landmarks. Psychiatry Res 183 (2):126–132. https://doi.org/10.1016/j.pscychresns.2010.05.006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910223/

    Article  Google Scholar 

  24. Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Dellino G, Meloni C (eds) Uncertainty management in simulation-optimization of complex systems: algorithms and applications, operations research/computer science interfaces series. Springer, Boston, pp 101–122. https://doi.org/10.1007/978-1-4899-7547-8_5

  25. Jolliffe IT (1986) Principal component analysis. Springer Series in Statistics. Springer, New York. https://doi.org/10.1007/978-1-4757-1904-8. https://www.springer.com/gp/book/9781475719048

    Book  Google Scholar 

  26. Lu YC, Kemper AR, Gayzik S, Untaroiu C, Beillas P (2013) Statistical modeling of human liver incorporating the variations in shape, size, and material properties. Stapp Car Crash J 57:285–311

    PubMed  Google Scholar 

  27. Lu YC, Untaroiu C (2014) A statistical geometrical description of the human liver for probabilistic occupant models. J Biomech 47. https://doi.org/10.1016/j.jbiomech.2014.09.031

  28. Lu YC, Untaroiu C (2013) Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models. Comput Methods Programs Biomed 111(3):613–628. https://doi.org/10.1016/j.cmpb.2013.05.017

    Article  Google Scholar 

  29. Marque C, Terrien J, Rihana S, Germain G (2007) Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC Pregnancy Childbirth 7(1):S5. https://doi.org/10.1186/1471-2393-7-S1-S5

    Article  Google Scholar 

  30. Spiegel M, Stephens L (2008) Chapitre 7: The binomial, normal, and poisson distributions. In: Theory and problems of statistics, Schaum’s Outlines. 4th edn.

  31. Muszynski C (2019) Évaluation de l’électrohystérogramme pour la surveillance et le diagnostic des femmes à risque d’accouchement prématuré. PhD Thesis, Université de Technologie de Compiègne. https://tel.archives-ouvertes.fr/tel-02349356

  32. Mwaniki MK, Atieno M, Lawn JE, Newton CRJC (2012) Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet (London, England) 379 (9814):445–452. https://doi.org/10.1016/S0140-6736(11)61577-8

    Article  Google Scholar 

  33. Norman JE, Shennan AH (2013) Prevention of preterm birth–why can’t we do any better? Lancet (London, England) 381 (9862):184–185. https://doi.org/10.1016/S0140-6736(12)61956-4

    Article  Google Scholar 

  34. Purisch SE, Gyamfi-Bannerman C (2017) Epidemiology of preterm birth. Seminars Perinatol 41(7):387–391. https://doi.org/10.1053/j.semperi.2017.07.009. http://www.sciencedirect.com/science/article/pii/S0146000517300812

    Article  Google Scholar 

  35. Rajamani K, Hug J, Nolte LP, Styner M (2004) Bone Morphing with statistical shape models for enhanced. In: Proceedings of SPIE - the international society for optical engineering. https://doi.org/10.1117/12.535000

  36. Rigaud B, Simon A, Gobeli M, Leseur J, Duverge L, Williaume D, Castelli J, Lafond C, Acosta O, Haigron P, Crevoisier R (2018) Statistical shape model to generate a planning library for cervical adaptive radiotherapy. IEEE Trans Med Imag PP:1–1. https://doi.org/10.1109/TMI.2018.2865547

    Google Scholar 

  37. Rios R, De Crevoisier R, Ospina JD, Commandeur F, Lafond C, Simon A, Haigron P, Espinosa J, Acosta O (2017) Population model of bladder motion and deformation based on dominant eigenmodes and mixed-effects models in prostate cancer radiotherapy. Med Image Anal 38:133–149. https://doi.org/10.1016/j.media.2017.03.001. https://www.sciencedirect.com/science/article/pii/S1361841517300373

    Article  Google Scholar 

  38. Rychlik M, Stankiewicz W, Morzyński M (2008) Applications of 3D PCA method for extraction of mean shape and geometrical features of biological objects set. Math Model Anal 13(3):413–420. https://doi.org/10.3846/1392-6292.2008.13.413-420

    Article  Google Scholar 

  39. Shen L, Cong S, Inlow M (2017) Chapter 13 - statistical shape analysis for brain structures. In: Zheng G, Li S, Székely G (eds) Statistical shape and deformation analysis. Academic Press, pp 351–378. https://doi.org/10.1016/B978-0-12-810493-4.00016-X. http://www.sciencedirect.com/science/article/pii/B978012810493400016X

  40. Sierra R, Zsemlye G, Székely G., Bajka M (2006) Generation of variable anatomical models for surgical training simulators. Med Image Anal 10(2):275–285. https://doi.org/10.1016/j.media.2005.11.003. http://www.sciencedirect.com/science/article/pii/S1361841505001118

    Article  CAS  Google Scholar 

  41. Styner MA, Rajamani KT, Nolte LP, Zsemlye G, Székely G., Taylor CJ, Davies RH (2003) Evaluation of 3D correspondence methods for model building. In: Taylor C, Noble JA (eds) Information processing in medical imaging, lecture notes in computer science. Springer, Berlin, pp 63–75. https://doi.org/10.1007/978-3-540-45087-0_6

  42. Taubin G (1995) Curve and surface smoothing without shrinkage. In: Proceedings of IEEE International conference on computer vision. pp 852–857. https://doi.org/10.1109/ICCV.1995.466848

  43. Terrien J, Steingrimsdottir T, Marque C, Karlsson B (2010) Synchronization between EMG at different uterine locations investigated using time-frequency ridge reconstruction: comparison of pregnancy and labor contractions. EURASIP J Adv Signal Process 2010(1):242493. https://doi.org/10.1155/2010/242493. https://asp-eurasipjournals.springeropen.com/articles/10.1155/2010/242493

    Article  Google Scholar 

  44. Yates KM, Lu YC, Untaroiu C (2016) Statistical shape analysis of the human spleen geometry for probabilistic occupant models. J Biomech 49(9):1540–1546. https://doi.org/10.1016/j.jbiomech.2016.03.027

    Article  Google Scholar 

  45. Yates KM, Untaroiu C (2018) Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing. J Biomech 74:50–56. https://doi.org/10.1016/j.jbiomech.2018.04.016

    Article  Google Scholar 

  46. Yochum M, Laforêt J, Marque C (2016) An electro-mechanical multiscale model of uterine pregnancy contraction. Comput Biol Med 77:182–194. https://doi.org/10.1016/j.compbiomed.2016.08.001. http://www.sciencedirect.com/science/article/pii/S0010482516301925

    Article  Google Scholar 

  47. Yochum M, Laforêt J, Marque C (2018) Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction. Comput Biol Med 93:17–30. https://doi.org/10.1016/j.compbiomed.2017.12.001. http://www.sciencedirect.com/science/article/pii/S0010482517303906

    Article  Google Scholar 

  48. Young RC (2015) Synchronization of regional contractions of human labor; direct effects of region size and tissue excitability. J Biomech 48(9):1614–1619. https://doi.org/10.1016/j.jbiomech.2015.02.002. http://www.sciencedirect.com/science/article/pii/S0021929015000688

    Article  Google Scholar 

  49. Young RC, Goloman G (2011) Mechanotransduction in rat myometrium: coordination of contractions of electrically and chemically isolated tissues. Reprod Sci (Thousand Oaks Calif.) 18(1):64–69. https://doi.org/10.1177/1933719110379637

    Article  Google Scholar 

Download references

Funding

This work received funding from the European Regional Development Fund (ERDF) 2014-2020. This was carried out and funded in the framework of the Labex MS2T. It was supported by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanthe Verwaerde.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Author contribution

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jolanthe Verwaerde, Alain Rassineux and Jérémy Laforet. The first draft of the manuscript was written by Jolanthe Verwaerde and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verwaerde, J., Laforet, J., Marque, C. et al. Statistical shape analysis of gravid uteri throughout pregnancy by a ray description technique. Med Biol Eng Comput 59, 2165–2183 (2021). https://doi.org/10.1007/s11517-021-02402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02402-1

Keywords

Navigation